in

Identifying structural connectivity priorities in eastern Paraguay’s fragmented Atlantic Forest

  • 1.

    Haddad, N. M. et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci Adv 1, e1500052 (2015).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 2.

    FAO. Global Forest Resources Assessment 2015. (2015).

  • 3.

    Sloan, S. & Sayer, J. A. Forest Resources Assessment of 2015 shows positive global trends but forest loss and degradation persist in poor tropical countries. For. Ecol. Manag. 352, 134–145 (2015).

    Article 

    Google Scholar 

  • 4.

    Malhi, Y., Gardner, T. A., Goldsmith, G. R., Silman, M. R. & Zelazowski, P. Tropical forests in the Anthropocene. Annu. Rev. Environ. Resour. 39, 125–159 (2014).

    Article 

    Google Scholar 

  • 5.

    Brancalion, P. H. S. et al. Global restoration opportunities in tropical rainforest landscapes. Sci. Adv. 5, eaav3223 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 6.

    Taubert, F. et al. Global patterns of tropical forest fragmentation. Nature 554, 519–522 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 7.

    Costa, L. P. & Leite, Y. L. R. Biogeography of South American forest mammals: Endemism and diversity in the Atlantic Forest. Phys.Chem. Earth B Hydrol. Oceans Atmos. 87, 2–881 (2000).

    Google Scholar 

  • 8.

    Oliveira-Filho, A. T. & Fontes, M. A. L. Patterns of floristic differentiation among Atlantic Forests in Southeastern Brazil and the influence of climate. Biotropica 32, 793 (2000).

    Article 

    Google Scholar 

  • 9.

    Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 10.

    Visconti, P. et al. Future hotspots of terrestrial mammal loss. Philos. Trans. R. Soc. Lond. B Biol. Sci. 366, 2693–2702 (2011).

    Google Scholar 

  • 11.

    Mittermeier, R. A., Myers, N., Gil, P. R. & Mittermeier, C.G . Hotspots: Earth’s biologically richest and most endangered terrestrial ecoregions (Cemex, Conservation International and Agrupacion Sierra Madre, Monterrey, Mexico, 1999).

    Google Scholar 

  • 12.

    Huang, C. et al. Rapid loss of Paraguay’s Atlantic forest and the status of protected areas—a Landsat assessment. Remote Sens. Environ. 106, 460–466 (2007).

    ADS 
    Article 

    Google Scholar 

  • 13.

    Ribeiro, M. C., Metzger, J. P., Martensen, A. C., Ponzoni, F. J. & Hirota, M. M. The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications for conservation. Biol. Conserv. 142, 1141–1153 (2009).

    Article 

    Google Scholar 

  • 14.

    Rezende, C. L. et al. From hotspot to hopespot: An opportunity for the Brazilian Atlantic Forest. Perspect. Ecol. Conserv. 16, 208–214 (2018).

    Google Scholar 

  • 15.

    Bicudo da Silva, R. F., Millington, J. D. A., Moran, E. F., Batistella, M. & Liu, J. Three decades of land-use and land-cover change in mountain regions of the Brazilian Atlantic Forest. Landsc. Urban Plann. 204, 103948 (2020).

    Article 

    Google Scholar 

  • 16.

    Da Ponte, E. et al. Tropical forest cover dynamics for Latin America using Earth observation data: A review covering the continental, regional, and local scale. Int. J. Remote Sens. 36, 3196–3242 (2015).

    Article 

    Google Scholar 

  • 17.

    Da Ponte, E., Roch, M., Leinenkugel, P., Dech, S. & Kuenzer, C. Paraguay’s Atlantic Forest cover loss—Satellite-based change detection and fragmentation analysis between 2003 and 2013. Appl. Geogr. 79, 37–49 (2017).

    Article 

    Google Scholar 

  • 18.

    Rosa, M. R. et al. Hidden destruction of older forests threatens Brazil’s Atlantic Forest and challenges restoration programs. Sci. Adv. 7, eabc4547 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 19.

    Nowosad, J. & Stepinski, T. F. Stochastic, empirically informed model of landscape dynamics and its application to deforestation scenarios. Geophys. Res. Lett. 46, 13845–13852 (2019).

    ADS 
    Article 

    Google Scholar 

  • 20.

    Hansen, M. C., Stehman, S. V. & Potapov, P. V. Quantification of global gross forest cover loss. Proc. Natl. Acad. Sci. U. S. A. 107, 8650–8655 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 21.

    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 22.

    de la Sancha, N. U. Patterns of small mammal diversity in fragments of subtropical Interior Atlantic Forest in eastern Paraguay. Mammalia 78, 437–449 (2014).

    Google Scholar 

  • 23.

    de la Sancha, N. U., Higgins, C. L., Presley, S. J. & Strauss, R. E. Metacommunity structure in a highly fragmented forest: Has deforestation in the Atlantic Forest altered historic biogeographic patterns? Divers. Distrib. 20, 1058–1070 (2014).

    Article 

    Google Scholar 

  • 24.

    de la Sancha, N. U. et al. An annotated checklist of the mammals of Paraguay. Therya 8, 241–260 (2017).

    Article 

    Google Scholar 

  • 25.

    Lanzone, C. et al. Diversidad, sistemática y conservación de roedores en el extremo sudoccidental del Bosque Atlántico Interior. Rev. Mus. Argent. Cienc. Nat. 20, 151–164 (2018).

    Article 

    Google Scholar 

  • 26.

    Da Ponte, E. et al. Forest cover loss in Paraguay and perception of ecosystem services: A case study of the Upper Parana Forest. Ecosyst. Serv. 24, 200–212 (2017).

    Article 

    Google Scholar 

  • 27.

    Da Ponte, E. et al. Assessing forest cover dynamics and forest perception in the Atlantic Forest of Paraguay, combining remote sensing and household level data. For. Trees Livelihoods 8, 389 (2017).

    Google Scholar 

  • 28.

    Fleytas, F. C. Cambios en el paisaje: Evolución de la cobertura vegetal en la Región Oriental del Paraguay. In Biodiversidad del Paraguay: Una Aproximación a Sus Realidades (eds. Salas Dueñas, D. A. & Facetti, J. F.), 77–88 (Fundación Moisés Bertoni, 2007).

  • 29.

    Esquivel, A. et al. Conservation status and challenges of the Atlantic Forest birds of Paraguay. Divers. 11, 247 (2019).

    Article 

    Google Scholar 

  • 30.

    de la Sancha, N. U. & Boyle, S. A. Predictive sampling effort and species-area relationship models for estimating richness in fragmented landscapes. PLoS One 14, e0226529 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 31.

    de la Sancha, N. U., Maestri, R., Bovendorp, R. S. & Higgins, C. L. Disentangling drivers of small mammal diversity in a highly fragmented forest system. Biotropica 52, 182–195 (2020).

    Article 

    Google Scholar 

  • 32.

    Andelman, S. J. & Willig, M. R. Alternative configurations of conservation reserves for Paraguayan bats: Considerations of spatial scale. Conserv. Biol. 16, 1352–1363 (2002).

    Article 

    Google Scholar 

  • 33.

    Gorresen, P. M., Marcos Gorresen, P. & Willig, M. R. Landscape responses of bats to habitat fragmentation in Atlantic Forest of Paraguay. J. Mammal. 85, 688–697 (2004).

    Article 

    Google Scholar 

  • 34.

    McCulloch, E. S. et al. Fragmentation of Atlantic forest has not affected gene flow of a widespread seed-dispersing bat. Molec. Ecol. 22, 4619–4633 (2013).

    Article 

    Google Scholar 

  • 35.

    Crooks, K. R. & Sanjayan, M. Connectivity conservation: Maintaining connections for nature. In Connectivity Conservation. (eds. Crooks, K. R. & Sanjayan, M.), 1–20 (Cambridge University Press, 2006).

  • 36.

    Calabrese, J. M. & Fagan, W. F. A comparison-shopper’s guide to connectivity metrics. Front. Ecol. Environ. 2, 529–536 (2004).

    Article 

    Google Scholar 

  • 37.

    Minor, E. S. & Urban, D. L. A graph-theory framework for evaluating landscape connectivity and conservation planning. Conserv. Biol. 22, 297–307 (2008).

    PubMed 
    Article 

    Google Scholar 

  • 38.

    de la Sancha, N.U., Boyle S.A., McIntyre, N.E., Brooks, D.M, Yanosky, A., Cuellar Soto E., Mereles, F., Camino, M., & Stevens, R. D. The disappearing Dry Chaco, one of the last dry forest systems on earth. Landscape Ecol. https://doi.org/10.1007/s10980-021-01291-x (2021).

    Article 

    Google Scholar 

  • 39.

    Keitt, T., Urban, D. & Milne, B. Detecting critical scales in fragmented landscapes. Conserv. Ecol. 1(1), (1997).

  • 40.

    Tischendorf, L. & Fahrig, L. How should we measure landscape connectivity?. Landsc. Ecol. 15, 633–641 (2000).

    Article 

    Google Scholar 

  • 41.

    McIntyre, N. E., Collins, S. D., Heintzman, L. J., Starr, S. M. & van Gestel, N. The challenge of assaying landscape connectivity in a changing world: A 27-year case study in the southern Great Plains (USA) playa network. Ecol. Indic. 91, 607–616 (2018).

    Article 

    Google Scholar 

  • 42.

    Ruiz, L. et al. Dynamic connectivity of temporary wetlands in the southern Great Plains. Landsc. Ecol. 29, 507–516 (2014).

    Article 

    Google Scholar 

  • 43.

    Bovendorp, R. S. et al. Defaunation and fragmentation erode small mammal diversity dimensions in tropical forests. Ecography 42, 23–35 (2019).

    Article 

    Google Scholar 

  • 44.

    Schipper, J. et al. The status of the world’s land and marine mammals: Diversity, threat, and knowledge. Science 322, 225–230 (2008).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 45.

    Stevens, R. D., Rowe, R. J. & Badgley, C. Gradients of mammalian biodiversity through space and time. J. Mammal. 100, 1069–1086 (2019).

    Article 

    Google Scholar 

  • 46.

    Olson, D. M. et al. Terrestrial ecoregions of the world: A new map of life on Earth: A new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. Bioscience 51, 933–938 (2001).

    Article 

    Google Scholar 

  • 47.

    McBride, R. T. & Thompson, J. J. Spatial ecology of Paraguay’s last remaining Atlantic Forest Jaguars (Panthera onca): Implications for their long-term survival. Biodivers. 20, 20–26 (2019).

    Article 

    Google Scholar 

  • 48.

    Morato, R. G. et al. Space use and movement of a neotropical top predator: The endangered jaguar. PLoS One 11, e0168176 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 49.

    Prevedello, J. A. & Vieira, M. V. Does the type of matrix matter? A quantitative review of the evidence. Biodivers. Conserv. 19, 1205–1223 (2010).

    Article 

    Google Scholar 

  • 50.

    Prevedello, J. A., Forero-Medina, G. & Vieira, M. V. Movement behaviour within and beyond perceptual ranges in three small mammals: Effects of matrix type and body mass. J. Anim. Ecol. 79, 1315–1323 (2010).

    PubMed 
    Article 

    Google Scholar 

  • 51.

    Cartes, J. L. et al. Cetartiodactyla y Perissodactyla: Animales con pezuñas. In Libro Rojo de los Mamíferos del Paraguay: Especies amenazadas de extinción (eds. Saldivar, S., Rojas, V. & Giménez, D.), 103–121 (CREATIO, 2017).

  • 52.

    Vieira, M. V. et al. Land use vs. fragment size and isolation as determinants of small mammal composition and richness in Atlantic Forest remnants. Biol. Conserv. 142, 1191–1200 (2009).

    Article 

    Google Scholar 

  • 53.

    Prevedello, J. A., Forero-Medina, G. & Vieira, M. V. Does land use affect perceptual range? Evidence from two marsupials of the Atlantic Forest. J. Zool. 284, 53–59 (2011).

    Article 

    Google Scholar 

  • 54.

    Pires, A. S., Lira, P. K., Fernandez, F. A. S., Schittini, G. M. & Oliveira, L. C. Frequency of movements of small mammals among Atlantic Coastal Forest fragments in Brazil. Biol. Conserv. 108, 229–237 (2002).

    Article 

    Google Scholar 

  • 55.

    Pardini, R. Effects of forest fragmentation on small mammals in an Atlantic Forest landscape. Biodivers. Conserv. 13, 2567–2586 (2004).

    Article 

    Google Scholar 

  • 56.

    Umetsu, F. & Pardini, R. Small mammals in a mosaic of forest remnants and anthropogenic habitats—evaluating matrix quality in an Atlantic forest landscape. Landsc. Ecol. 22, 517–530 (2007).

    Article 

    Google Scholar 

  • 57.

    Umetsu, F., Paul Metzger, J. & Pardini, R. Importance of estimating matrix quality for modeling species distribution in complex tropical landscapes: A test with Atlantic forest small mammals. Ecography 31, 359–370 (2008).

    Article 

    Google Scholar 

  • 58.

    Boyle, S. A., de la Sancha, N. U., Pérez, P. & Kabelik, D. Small mammal glucocorticoid concentrations vary with forest fragment size, trap type, and mammal taxa in the Interior Atlantic Forest. Sci. Rep. 11, 1–13 (2021).

    Article 
    CAS 

    Google Scholar 

  • 59.

    Diniz, M. F., Coelho, M. T. P., de Sousa, F. G., Hasui, É. & Loyola, R. The underestimated role of small fragments for carnivore dispersal in the Atlantic Forest. Perspect. Ecol. Conser. 19, 81–89 (2021).

    Google Scholar 

  • 60.

    Johnston, C. A. & McIntyre, N. E. Effects of cropland encroachment on prairie pothole wetlands: Numbers, density, size, shape, and structural connectivity. Landsc. Ecol. 34, 827–841 (2019).

    Article 

    Google Scholar 

  • 61.

    Galpern, P., Manseau, M. & Fall, A. Patch-based graphs of landscape connectivity: A guide to construction, analysis and application for conservation. Biol. Conserv. 144, 44–55 (2011).

    Article 

    Google Scholar 

  • 62.

    de la Sancha, N. U., Libardi, G. S. & Pardiñas, U. F. J. Discovery of a new genus record for Paraguay, the Atlantic Forest endemic rodent Abrawayaomys (Cricetidae, Sigmodontinae). Mammalia 84, 366–371 (2020).

    Article 

    Google Scholar 

  • 63.

    Gardner, R. H. & Gustafson, E. J. Simulating dispersal of reintroduced species within heterogeneous landscapes. Ecol. Modell. 171, 339–358 (2004).

    Article 

    Google Scholar 

  • 64.

    Fahrig, L. Rethinking patch size and isolation effects: The habitat amount hypothesis. J. Biogeogr. 40, 1649–1663 (2013).

    Article 

    Google Scholar 

  • 65.

    Catie, U. Proyecto: Mejorando la Conservación de la Biodiversidad y el Manejo Sostenible de la Tierra en el Bosque Atlántico del Paraguay Oriental: (Paraguay Biodiversidad): Módulo De Capacitación: Cadenas De Valor Agropecuarias Y Forestales. (2018).

  • 66.

    Di Bitteti, M., Placci, G. & Dietz, L. A. A Biodiversity Vision of the Upper Paraná Atlantic Forest Ecoregion: Designing a Biodiversity Landscape and Setting Priorities for Conservation Action. 1–145 (World Wildlife Fund, 2003).

  • 67.

    McIntyre, N. E., Drake, J. C. & Griffis-Kyle, K. L. A connectivity and wildlife management conflict in isolated desert waters: Connectivity of isolated desert waters. J. Wildl. Manag. 80, 655–666 (2016).

    Article 

    Google Scholar 

  • 68.

    Drake, J. C., Griffis-Kyle, K. & McIntyre, N. E. Using nested connectivity models to resolve management conflicts of isolated water networks in the Sonoran Desert. Ecosphere 8, e01652 (2017).

    Article 

    Google Scholar 

  • 69.

    Boyle, S. A. et al. High-resolution satellite imagery is an important yet underutilized resource in conservation biology. PLoS One 9, e86908 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 70.

    Turner, W. et al. Remote sensing for biodiversity science and conservation. Trends Ecol. Evol. 18, 306–314 (2003).

    Article 

    Google Scholar 

  • 71.

    ESRI. ArcGIS. (2019).

  • 72.

    Csardi, G. & Nepusz, T. The igraph software package for complex network research. Int. J. Comp. Sys. 1695 (2006).

  • 73.

    R Core Team. R: A language and environment for statistical computing. (2013).

  • 74.

    Bovendorp, R. S. et al. Atlantic small-mammal: A dataset of communities of rodents and marsupials of the Atlantic forests of South America. Ecology 98, 2226 (2017).

    PubMed 
    Article 

    Google Scholar 

  • 75.

    Newman, M. E. J. & Girvan, M. Finding and evaluating community structure in networks. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69, 026113 (2004).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 76.

    Clauset, A., Newman, M. E. J. & Moore, C. Finding community structure in very large networks. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 70, 066111 (2004).

    Article 
    CAS 

    Google Scholar 

  • 77.

    Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 78.

    Galetti, M., Bovendorp, R. S. & Guevara, R. Defaunation of large mammals leads to an increase in seed predation in the Atlantic forests. Global Ecol. Conserv. 3, 824–830 (2015).

    Article 

    Google Scholar 

  • 79.

    Galpern, P. Modelling landscape connectivity for highly-mobile terrestrial animals: A continuous and scalable approach. (Natural Resources Institute, 2012).

  • 80.

    Minor, E. S. & Urban, D. L. Graph theory as a proxy for spatially explicit population models in conservation planning. Ecol. Appl. 17, 1771–1782 (2007).

    PubMed 
    Article 

    Google Scholar 

  • 81.

    Fusco-Costa, R., Ingberman, B., do Couto, H. T. Z., Nakano-Oliveira, E. & de Araujo Monteiro-Filho, E. L. Population density of a coastal island population of the ocelot in Atlantic Forest, southeastern Brazil. Mamm. Biol. 75, 358–362 (2010).

    Article 

    Google Scholar 

  • 82.

    Medici, E. P. Assessing the viability of lowland Tapir populations in a fragmented landscape. (University of Kent, 2010).

  • 83.

    Bianconi, G. V., Mikich, S. B. & Pedro, W. A. Movements of bats (Mammalia, Chiroptera) in the Atlantic Forest remnants in southern Brazil. Rev. Bras. Zool. 23, 1199–1206 (2006).

    Article 

    Google Scholar 

  • 84.

    Lira, P. K., dos Santos Fernandez, F. A., Carlos, H. S. A. & de Lima Curzio, P. Use of a fragmented landscape by three species of opossum in south-eastern Brazil. J. Trop. Ecol. 23, 427–435 (2007).

    Article 

    Google Scholar 

  • 85.

    Mendel, S. M. & Vieira, M. V. Movement distances and density estimation of small mammals using the spool-and-line technique. Acta Theriol. 48, 289–300 (2003).

    Article 

    Google Scholar 

  • 86.

    Passamani, M. & Fernando, A. S. Movements of small mammals among Atlantic Forest fragments in Espırito Santo, Southeastern Brazil. Mammalia 75, 83–86 (2011).

    Article 

    Google Scholar 

  • 87.

    Püttker, T., Meyer-Lucht, Y. & Sommer, S. Movement distances of five rodent and two marsupial species in forest fragments of the coastal Atlantic Rainforest, Brazil. Ecotropica 12, 131–139 (2006).

    Google Scholar 

  • 88.

    Moraes Junior, E. A. & Chiarello, A. G. A radio tracking study of home range and movements of the marsupial Micoureus demerarae (Thomas) (Mammalia, Didelphidae) in the Atlantic Forest of south-eastern Brazil. Rev. Bras. Zool. 22, 85–91 (2005).

    Article 

    Google Scholar 

  • 89.

    Delciellos, A. C., Ribeiro, S. E. & Vieira, M. V. Habitat fragmentation effects on fine-scale movements and space use of an opossum in the Atlantic Forest. J. Mammal. 98, 1129–1136 (2017).

    Article 

    Google Scholar 

  • 90.

    Püttker, T., de Barros, C. dos S., Martins, T. K., Sommer, S. & Pardini, R. Suitability of distance metrics as indexes of home-range size in tropical rodent species. J. Mammal. 93, 115–123 (2012).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Gene drives gaining speed

    Principles of seed banks and the emergence of complexity from dormancy