Haddad, N. M. et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci Adv 1, e1500052 (2015).
Google Scholar
FAO. Global Forest Resources Assessment 2015. (2015).
Sloan, S. & Sayer, J. A. Forest Resources Assessment of 2015 shows positive global trends but forest loss and degradation persist in poor tropical countries. For. Ecol. Manag. 352, 134–145 (2015).
Google Scholar
Malhi, Y., Gardner, T. A., Goldsmith, G. R., Silman, M. R. & Zelazowski, P. Tropical forests in the Anthropocene. Annu. Rev. Environ. Resour. 39, 125–159 (2014).
Google Scholar
Brancalion, P. H. S. et al. Global restoration opportunities in tropical rainforest landscapes. Sci. Adv. 5, eaav3223 (2019).
Google Scholar
Taubert, F. et al. Global patterns of tropical forest fragmentation. Nature 554, 519–522 (2018).
Google Scholar
Costa, L. P. & Leite, Y. L. R. Biogeography of South American forest mammals: Endemism and diversity in the Atlantic Forest. Phys.Chem. Earth B Hydrol. Oceans Atmos. 87, 2–881 (2000).
Oliveira-Filho, A. T. & Fontes, M. A. L. Patterns of floristic differentiation among Atlantic Forests in Southeastern Brazil and the influence of climate. Biotropica 32, 793 (2000).
Google Scholar
Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).
Google Scholar
Visconti, P. et al. Future hotspots of terrestrial mammal loss. Philos. Trans. R. Soc. Lond. B Biol. Sci. 366, 2693–2702 (2011).
Mittermeier, R. A., Myers, N., Gil, P. R. & Mittermeier, C.G . Hotspots: Earth’s biologically richest and most endangered terrestrial ecoregions (Cemex, Conservation International and Agrupacion Sierra Madre, Monterrey, Mexico, 1999).
Huang, C. et al. Rapid loss of Paraguay’s Atlantic forest and the status of protected areas—a Landsat assessment. Remote Sens. Environ. 106, 460–466 (2007).
Google Scholar
Ribeiro, M. C., Metzger, J. P., Martensen, A. C., Ponzoni, F. J. & Hirota, M. M. The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications for conservation. Biol. Conserv. 142, 1141–1153 (2009).
Google Scholar
Rezende, C. L. et al. From hotspot to hopespot: An opportunity for the Brazilian Atlantic Forest. Perspect. Ecol. Conserv. 16, 208–214 (2018).
Bicudo da Silva, R. F., Millington, J. D. A., Moran, E. F., Batistella, M. & Liu, J. Three decades of land-use and land-cover change in mountain regions of the Brazilian Atlantic Forest. Landsc. Urban Plann. 204, 103948 (2020).
Google Scholar
Da Ponte, E. et al. Tropical forest cover dynamics for Latin America using Earth observation data: A review covering the continental, regional, and local scale. Int. J. Remote Sens. 36, 3196–3242 (2015).
Google Scholar
Da Ponte, E., Roch, M., Leinenkugel, P., Dech, S. & Kuenzer, C. Paraguay’s Atlantic Forest cover loss—Satellite-based change detection and fragmentation analysis between 2003 and 2013. Appl. Geogr. 79, 37–49 (2017).
Google Scholar
Rosa, M. R. et al. Hidden destruction of older forests threatens Brazil’s Atlantic Forest and challenges restoration programs. Sci. Adv. 7, eabc4547 (2021).
Google Scholar
Nowosad, J. & Stepinski, T. F. Stochastic, empirically informed model of landscape dynamics and its application to deforestation scenarios. Geophys. Res. Lett. 46, 13845–13852 (2019).
Google Scholar
Hansen, M. C., Stehman, S. V. & Potapov, P. V. Quantification of global gross forest cover loss. Proc. Natl. Acad. Sci. U. S. A. 107, 8650–8655 (2010).
Google Scholar
Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).
Google Scholar
de la Sancha, N. U. Patterns of small mammal diversity in fragments of subtropical Interior Atlantic Forest in eastern Paraguay. Mammalia 78, 437–449 (2014).
de la Sancha, N. U., Higgins, C. L., Presley, S. J. & Strauss, R. E. Metacommunity structure in a highly fragmented forest: Has deforestation in the Atlantic Forest altered historic biogeographic patterns? Divers. Distrib. 20, 1058–1070 (2014).
Google Scholar
de la Sancha, N. U. et al. An annotated checklist of the mammals of Paraguay. Therya 8, 241–260 (2017).
Google Scholar
Lanzone, C. et al. Diversidad, sistemática y conservación de roedores en el extremo sudoccidental del Bosque Atlántico Interior. Rev. Mus. Argent. Cienc. Nat. 20, 151–164 (2018).
Google Scholar
Da Ponte, E. et al. Forest cover loss in Paraguay and perception of ecosystem services: A case study of the Upper Parana Forest. Ecosyst. Serv. 24, 200–212 (2017).
Google Scholar
Da Ponte, E. et al. Assessing forest cover dynamics and forest perception in the Atlantic Forest of Paraguay, combining remote sensing and household level data. For. Trees Livelihoods 8, 389 (2017).
Fleytas, F. C. Cambios en el paisaje: Evolución de la cobertura vegetal en la Región Oriental del Paraguay. In Biodiversidad del Paraguay: Una Aproximación a Sus Realidades (eds. Salas Dueñas, D. A. & Facetti, J. F.), 77–88 (Fundación Moisés Bertoni, 2007).
Esquivel, A. et al. Conservation status and challenges of the Atlantic Forest birds of Paraguay. Divers. 11, 247 (2019).
Google Scholar
de la Sancha, N. U. & Boyle, S. A. Predictive sampling effort and species-area relationship models for estimating richness in fragmented landscapes. PLoS One 14, e0226529 (2019).
Google Scholar
de la Sancha, N. U., Maestri, R., Bovendorp, R. S. & Higgins, C. L. Disentangling drivers of small mammal diversity in a highly fragmented forest system. Biotropica 52, 182–195 (2020).
Google Scholar
Andelman, S. J. & Willig, M. R. Alternative configurations of conservation reserves for Paraguayan bats: Considerations of spatial scale. Conserv. Biol. 16, 1352–1363 (2002).
Google Scholar
Gorresen, P. M., Marcos Gorresen, P. & Willig, M. R. Landscape responses of bats to habitat fragmentation in Atlantic Forest of Paraguay. J. Mammal. 85, 688–697 (2004).
Google Scholar
McCulloch, E. S. et al. Fragmentation of Atlantic forest has not affected gene flow of a widespread seed-dispersing bat. Molec. Ecol. 22, 4619–4633 (2013).
Google Scholar
Crooks, K. R. & Sanjayan, M. Connectivity conservation: Maintaining connections for nature. In Connectivity Conservation. (eds. Crooks, K. R. & Sanjayan, M.), 1–20 (Cambridge University Press, 2006).
Calabrese, J. M. & Fagan, W. F. A comparison-shopper’s guide to connectivity metrics. Front. Ecol. Environ. 2, 529–536 (2004).
Google Scholar
Minor, E. S. & Urban, D. L. A graph-theory framework for evaluating landscape connectivity and conservation planning. Conserv. Biol. 22, 297–307 (2008).
Google Scholar
de la Sancha, N.U., Boyle S.A., McIntyre, N.E., Brooks, D.M, Yanosky, A., Cuellar Soto E., Mereles, F., Camino, M., & Stevens, R. D. The disappearing Dry Chaco, one of the last dry forest systems on earth. Landscape Ecol. https://doi.org/10.1007/s10980-021-01291-x (2021).
Google Scholar
Keitt, T., Urban, D. & Milne, B. Detecting critical scales in fragmented landscapes. Conserv. Ecol. 1(1), (1997).
Tischendorf, L. & Fahrig, L. How should we measure landscape connectivity?. Landsc. Ecol. 15, 633–641 (2000).
Google Scholar
McIntyre, N. E., Collins, S. D., Heintzman, L. J., Starr, S. M. & van Gestel, N. The challenge of assaying landscape connectivity in a changing world: A 27-year case study in the southern Great Plains (USA) playa network. Ecol. Indic. 91, 607–616 (2018).
Google Scholar
Ruiz, L. et al. Dynamic connectivity of temporary wetlands in the southern Great Plains. Landsc. Ecol. 29, 507–516 (2014).
Google Scholar
Bovendorp, R. S. et al. Defaunation and fragmentation erode small mammal diversity dimensions in tropical forests. Ecography 42, 23–35 (2019).
Google Scholar
Schipper, J. et al. The status of the world’s land and marine mammals: Diversity, threat, and knowledge. Science 322, 225–230 (2008).
Google Scholar
Stevens, R. D., Rowe, R. J. & Badgley, C. Gradients of mammalian biodiversity through space and time. J. Mammal. 100, 1069–1086 (2019).
Google Scholar
Olson, D. M. et al. Terrestrial ecoregions of the world: A new map of life on Earth: A new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. Bioscience 51, 933–938 (2001).
Google Scholar
McBride, R. T. & Thompson, J. J. Spatial ecology of Paraguay’s last remaining Atlantic Forest Jaguars (Panthera onca): Implications for their long-term survival. Biodivers. 20, 20–26 (2019).
Google Scholar
Morato, R. G. et al. Space use and movement of a neotropical top predator: The endangered jaguar. PLoS One 11, e0168176 (2016).
Google Scholar
Prevedello, J. A. & Vieira, M. V. Does the type of matrix matter? A quantitative review of the evidence. Biodivers. Conserv. 19, 1205–1223 (2010).
Google Scholar
Prevedello, J. A., Forero-Medina, G. & Vieira, M. V. Movement behaviour within and beyond perceptual ranges in three small mammals: Effects of matrix type and body mass. J. Anim. Ecol. 79, 1315–1323 (2010).
Google Scholar
Cartes, J. L. et al. Cetartiodactyla y Perissodactyla: Animales con pezuñas. In Libro Rojo de los Mamíferos del Paraguay: Especies amenazadas de extinción (eds. Saldivar, S., Rojas, V. & Giménez, D.), 103–121 (CREATIO, 2017).
Vieira, M. V. et al. Land use vs. fragment size and isolation as determinants of small mammal composition and richness in Atlantic Forest remnants. Biol. Conserv. 142, 1191–1200 (2009).
Google Scholar
Prevedello, J. A., Forero-Medina, G. & Vieira, M. V. Does land use affect perceptual range? Evidence from two marsupials of the Atlantic Forest. J. Zool. 284, 53–59 (2011).
Google Scholar
Pires, A. S., Lira, P. K., Fernandez, F. A. S., Schittini, G. M. & Oliveira, L. C. Frequency of movements of small mammals among Atlantic Coastal Forest fragments in Brazil. Biol. Conserv. 108, 229–237 (2002).
Google Scholar
Pardini, R. Effects of forest fragmentation on small mammals in an Atlantic Forest landscape. Biodivers. Conserv. 13, 2567–2586 (2004).
Google Scholar
Umetsu, F. & Pardini, R. Small mammals in a mosaic of forest remnants and anthropogenic habitats—evaluating matrix quality in an Atlantic forest landscape. Landsc. Ecol. 22, 517–530 (2007).
Google Scholar
Umetsu, F., Paul Metzger, J. & Pardini, R. Importance of estimating matrix quality for modeling species distribution in complex tropical landscapes: A test with Atlantic forest small mammals. Ecography 31, 359–370 (2008).
Google Scholar
Boyle, S. A., de la Sancha, N. U., Pérez, P. & Kabelik, D. Small mammal glucocorticoid concentrations vary with forest fragment size, trap type, and mammal taxa in the Interior Atlantic Forest. Sci. Rep. 11, 1–13 (2021).
Google Scholar
Diniz, M. F., Coelho, M. T. P., de Sousa, F. G., Hasui, É. & Loyola, R. The underestimated role of small fragments for carnivore dispersal in the Atlantic Forest. Perspect. Ecol. Conser. 19, 81–89 (2021).
Johnston, C. A. & McIntyre, N. E. Effects of cropland encroachment on prairie pothole wetlands: Numbers, density, size, shape, and structural connectivity. Landsc. Ecol. 34, 827–841 (2019).
Google Scholar
Galpern, P., Manseau, M. & Fall, A. Patch-based graphs of landscape connectivity: A guide to construction, analysis and application for conservation. Biol. Conserv. 144, 44–55 (2011).
Google Scholar
de la Sancha, N. U., Libardi, G. S. & Pardiñas, U. F. J. Discovery of a new genus record for Paraguay, the Atlantic Forest endemic rodent Abrawayaomys (Cricetidae, Sigmodontinae). Mammalia 84, 366–371 (2020).
Google Scholar
Gardner, R. H. & Gustafson, E. J. Simulating dispersal of reintroduced species within heterogeneous landscapes. Ecol. Modell. 171, 339–358 (2004).
Google Scholar
Fahrig, L. Rethinking patch size and isolation effects: The habitat amount hypothesis. J. Biogeogr. 40, 1649–1663 (2013).
Google Scholar
Catie, U. Proyecto: Mejorando la Conservación de la Biodiversidad y el Manejo Sostenible de la Tierra en el Bosque Atlántico del Paraguay Oriental: (Paraguay Biodiversidad): Módulo De Capacitación: Cadenas De Valor Agropecuarias Y Forestales. (2018).
Di Bitteti, M., Placci, G. & Dietz, L. A. A Biodiversity Vision of the Upper Paraná Atlantic Forest Ecoregion: Designing a Biodiversity Landscape and Setting Priorities for Conservation Action. 1–145 (World Wildlife Fund, 2003).
McIntyre, N. E., Drake, J. C. & Griffis-Kyle, K. L. A connectivity and wildlife management conflict in isolated desert waters: Connectivity of isolated desert waters. J. Wildl. Manag. 80, 655–666 (2016).
Google Scholar
Drake, J. C., Griffis-Kyle, K. & McIntyre, N. E. Using nested connectivity models to resolve management conflicts of isolated water networks in the Sonoran Desert. Ecosphere 8, e01652 (2017).
Google Scholar
Boyle, S. A. et al. High-resolution satellite imagery is an important yet underutilized resource in conservation biology. PLoS One 9, e86908 (2014).
Google Scholar
Turner, W. et al. Remote sensing for biodiversity science and conservation. Trends Ecol. Evol. 18, 306–314 (2003).
Google Scholar
ESRI. ArcGIS. (2019).
Csardi, G. & Nepusz, T. The igraph software package for complex network research. Int. J. Comp. Sys. 1695 (2006).
R Core Team. R: A language and environment for statistical computing. (2013).
Bovendorp, R. S. et al. Atlantic small-mammal: A dataset of communities of rodents and marsupials of the Atlantic forests of South America. Ecology 98, 2226 (2017).
Google Scholar
Newman, M. E. J. & Girvan, M. Finding and evaluating community structure in networks. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69, 026113 (2004).
Google Scholar
Clauset, A., Newman, M. E. J. & Moore, C. Finding community structure in very large networks. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 70, 066111 (2004).
Google Scholar
Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).
Google Scholar
Galetti, M., Bovendorp, R. S. & Guevara, R. Defaunation of large mammals leads to an increase in seed predation in the Atlantic forests. Global Ecol. Conserv. 3, 824–830 (2015).
Google Scholar
Galpern, P. Modelling landscape connectivity for highly-mobile terrestrial animals: A continuous and scalable approach. (Natural Resources Institute, 2012).
Minor, E. S. & Urban, D. L. Graph theory as a proxy for spatially explicit population models in conservation planning. Ecol. Appl. 17, 1771–1782 (2007).
Google Scholar
Fusco-Costa, R., Ingberman, B., do Couto, H. T. Z., Nakano-Oliveira, E. & de Araujo Monteiro-Filho, E. L. Population density of a coastal island population of the ocelot in Atlantic Forest, southeastern Brazil. Mamm. Biol. 75, 358–362 (2010).
Google Scholar
Medici, E. P. Assessing the viability of lowland Tapir populations in a fragmented landscape. (University of Kent, 2010).
Bianconi, G. V., Mikich, S. B. & Pedro, W. A. Movements of bats (Mammalia, Chiroptera) in the Atlantic Forest remnants in southern Brazil. Rev. Bras. Zool. 23, 1199–1206 (2006).
Google Scholar
Lira, P. K., dos Santos Fernandez, F. A., Carlos, H. S. A. & de Lima Curzio, P. Use of a fragmented landscape by three species of opossum in south-eastern Brazil. J. Trop. Ecol. 23, 427–435 (2007).
Google Scholar
Mendel, S. M. & Vieira, M. V. Movement distances and density estimation of small mammals using the spool-and-line technique. Acta Theriol. 48, 289–300 (2003).
Google Scholar
Passamani, M. & Fernando, A. S. Movements of small mammals among Atlantic Forest fragments in Espırito Santo, Southeastern Brazil. Mammalia 75, 83–86 (2011).
Google Scholar
Püttker, T., Meyer-Lucht, Y. & Sommer, S. Movement distances of five rodent and two marsupial species in forest fragments of the coastal Atlantic Rainforest, Brazil. Ecotropica 12, 131–139 (2006).
Moraes Junior, E. A. & Chiarello, A. G. A radio tracking study of home range and movements of the marsupial Micoureus demerarae (Thomas) (Mammalia, Didelphidae) in the Atlantic Forest of south-eastern Brazil. Rev. Bras. Zool. 22, 85–91 (2005).
Google Scholar
Delciellos, A. C., Ribeiro, S. E. & Vieira, M. V. Habitat fragmentation effects on fine-scale movements and space use of an opossum in the Atlantic Forest. J. Mammal. 98, 1129–1136 (2017).
Google Scholar
Püttker, T., de Barros, C. dos S., Martins, T. K., Sommer, S. & Pardini, R. Suitability of distance metrics as indexes of home-range size in tropical rodent species. J. Mammal. 93, 115–123 (2012).
Google Scholar
Source: Ecology - nature.com