in

Impact of a nonnative parasitoid species on intraspecific interference and offspring sex ratio

  • 1.

    Sih, A., Crowley, P., McPeek, M., Petranka, J. & Strohmeier, K. Predation, competition, and prey communities: A review of field experiments. Annu. Rev. Ecol. S. 16, 269–311 (1985).

    Google Scholar 

  • 2.

    Schmitz, O. J. et al. From individuals to ecosystem function: Toward an integration of evolutionary and ecosystem ecology. Ecology 89, 2436–2445 (2008).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 3.

    Sih, A., Englund, G. & Wooster, D. Emergent impacts of multiple predators on prey. Trends Ecol. Evol. 13, 350–355 (1998).

    CAS 
    PubMed 

    Google Scholar 

  • 4.

    Holt, R. D. Predation, apparent competition, and structure of prey communities. Theor. Popul. Biol. 12, 197–229 (1977).

    MathSciNet 
    CAS 
    PubMed 

    Google Scholar 

  • 5.

    Bonsall, M. B. & Hassell, M. P. Apparent competition structures ecological assemblages. Nature 388, 371–373 (1997).

    CAS 
    ADS 

    Google Scholar 

  • 6.

    Tuda, M. & Shimada, M. Complexity, evolution, and persistence in host–parasitoid experimental systems with Callosobruchus beetles as the host. Adv. Ecol. Res. 37, 37–75 (2005).

    Google Scholar 

  • 7.

    Briggs, C. J., Nisbet, R. M. & Murdoch, W. W. Coexistence of competing parasitoid species on a host with a variable life cycle. Theor. Popul. Biol. 44, 341–373 (1993).

    MATH 

    Google Scholar 

  • 8.

    Peri, E., Cusumano, A., Amodeo, V., Wajnberg, E. & Colazza, S. Intraguild interactions between two egg parasitoids of a true bug in semi-field and field conditions. PLoS ONE 9, e99876 (2014).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 9.

    Pekas, A., Tena, A., Harvey, J. A., Garcia-Marí, F. & Frago, E. Host size and spatiotemporal patterns mediate the coexistence of specialist parasitoids. Ecology 97, 1345–1356 (2016).

    PubMed 

    Google Scholar 

  • 10.

    DeLong, J. P. & Vasseur, D. A. Mutual interference is common and mostly intermediate in magnitude. BMC Ecol. 11, 1 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 11.

    Hassell, M. P. & Varley, G. C. New inductive population model for insect parasites and its bearing on biological control. Nature 223, 1133–1137 (1969).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 12.

    Hassell, M. P. Mutual interference between searching insect parasites. J. Anim. Ecol. 40, 473–486 (1971).

    Google Scholar 

  • 13.

    Charnov, E. L., Orians, G. H. & Hyatt, K. Ecological implications of resource depression. Am. Nat. 110, 247–259 (1976).

    Google Scholar 

  • 14.

    Free, C. A., Beddington, J. R. & Lawton, J. H. On the inadequacy of simple models of mutual interference for parasitism and predation. J. Anim. Ecol. 46, 543–554 (1977).

    Google Scholar 

  • 15.

    Visser, M. E., Jones, T. H. & Driessen, G. Interference among insect parasitoids: A multi-patch experiment. J. Anim. Ecol. 68, 108–120 (1999).

    Google Scholar 

  • 16.

    Beddington, J. R. Mutual interference between parasites or predators and its effect on searching efficiency. J. Anim. Ecol. 44, 331–340 (1975).

    Google Scholar 

  • 17.

    DeAngelis, D. L., Goldstein, R. A. & O’Neill, R. V. A model for trophic interaction. Ecology 56, 881–892 (1975).

    Google Scholar 

  • 18.

    Arditi, R., Callois, J. M., Tyutyunov, Y. & Jost, C. Does mutual interference always stability predator–prey dynamics? A comparison of models. C. R. Biol. 327, 1037–1057 (2004).

    PubMed 

    Google Scholar 

  • 19.

    Abrams, P. A. Why ratio dependence is (still) a bad model of predation. Biol. Rev. 90, 794–814 (2015).

    PubMed 

    Google Scholar 

  • 20.

    Pedersen, B. S. & Mills, N. J. Single vs. multiple introduction in biological control: The roles of parasitoid efficiency, antagonism, and niche overlap. J. Appl. Ecol. 41, 973–984 (2004).

    Google Scholar 

  • 21.

    Amarasekare, P. Interference competition and species coexistence. Proc. R. Soc. B 269, 2550–2641 (2002).

    Google Scholar 

  • 22.

    Mohamad, R., Wajnberg, E., Monge, J. P. & Goubault, M. The effect of direct interspecific competition on patch exploitation strategies in parasitoid wasps. Oecologia 177, 305–315 (2015).

    PubMed 
    ADS 

    Google Scholar 

  • 23.

    Elliott, J. M. Interspecific interference and the functional response of four species of carnivorous stoneflies. Freshw. Biol. 48, 1527–1539 (2004).

    Google Scholar 

  • 24.

    Nakamichi, Y., Tuda, M. & Wajnberg, E. Intraspecific interference between native parasitoids modified by a non-native parasitoid and its consequence on population dynamics. Ecol. Entomol. 45, 1263–1271 (2020).

    Google Scholar 

  • 25.

    Trivers, R. L. & Willard, D. E. Natural selection of parental ability to vary the sex ratio of offspring. Science 179, 90–92 (1973).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 26.

    Appleby, B. M., Petty, S. J., Blakey, J. K., Rainey, P. & Macdonald, D. W. Does variation of sex ratio enhance reproductive success of offspring in tawny owls (Strix aluco)?. Proc. R. Soc. B 264, 1111–1116 (1997).

    PubMed Central 
    ADS 

    Google Scholar 

  • 27.

    Nishimura, K. & Jahn, G. C. Sex allocation of three solitary ectoparasitic wasp species on bean weevil larvae: Sex ratio change with host quality and local mate competition. J. Ethol. 14, 27–33 (1996).

    Google Scholar 

  • 28.

    Shimada, M. & Fujii, K. Niche modification and stability of competitive systems. I. Niche modification process. Res. Popul. Ecol. 27, 185–201 (1985).

    Google Scholar 

  • 29.

    Utida, S. Population fluctuation, an experimental and theoretical approach. Cold Spring Harb. Symp. Quant. Biol. 22, 139–151 (1957).

    Google Scholar 

  • 30.

    Utida, S. Cyclic fluctuations of population density intrinsic to the host–parasitoid system. Ecology 38, 442–449 (1957).

    Google Scholar 

  • 31.

    Fujii, K. Studies on the interspecies competition between the azuki bean weevil and the southern cowpea weevil. III. Some characteristics of strains of two species. Res. Popul. Ecol. 10, 87–98 (1968).

    Google Scholar 

  • 32.

    Bellows, T. S. Analytical models for laboratory populations of Callosobruchus chinensis and C. maculatus (Coleoptera, Bruchidae). J. Anim. Ecol. 51, 263–287 (1982).

    Google Scholar 

  • 33.

    Tuda, M. Density dependence depends on scale; at larval resource patch and at whole population. Res. Popul. Ecol. 35, 261–271 (1993).

    Google Scholar 

  • 34.

    Tuda, M. & Shimada, M. Developmental schedules and persistence of experimental host–parasitoid systems at two different temperatures. Oecologia 103, 283–291 (1995).

    PubMed 
    ADS 

    Google Scholar 

  • 35.

    Tuda, M., Chou, L.-Y., Niyomdham, C., Buranapanichpan, S. & Tateishi, Y. Ecological factors associated with pest status in Callosobruchus (Coleoptera: Bruchidae): High host specificity of non-pests to Cajaninae (Fabaceae). J. Stored Prod. Res. 41, 31–45 (2005).

    Google Scholar 

  • 36.

    Tuda, M., Rönn, J., Buranapanichpan, S., Wasano, N. & Arnqvist, G. Evolutionary diversification of the bean beetle genus Callosobruchus (Coleoptera: Bruchidae): Traits associated with stored-product pest status. Mol. Ecol. 15, 3541–3551 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • 37.

    Tuda, M. Applied evolutionary ecology of insects in the subfamily Bruchinae (Coleoptera: Chrysomelidae). Appl. Entomol. Zool. 42, 337–346 (2007).

    Google Scholar 

  • 38.

    Clausen, C. P. Introduced Parasites and Predators of Arthropod Pests and Weeds: A World Review (United States Department of Agriculture Handbook, 1978).

    Google Scholar 

  • 39.

    Schmale, I., Wäckers, F. L., Cardona, C. & Dorn, S. Control potential of three hymenopteran parasitoid species against the bean weevil in stored beans: The effect of adult parasitoid nutrition on longevity and progeny production. Biol. Control 21, 134–139 (2001).

    Google Scholar 

  • 40.

    Vamosi, S. M., den Hollander, M. D. & Tuda, M. Egg dispersion is more important than competition type for herbivores attacked by a parasitoid. Popul. Ecol. 53, 319–326 (2011).

    Google Scholar 

  • 41.

    Shimada, M. Population fluctuation and persistence of one-host–two parasitoid systems depending on resource distribution: From parasitizing behavior to population dynamics. Res. Popul. Ecol. 41, 69–79 (1999).

    Google Scholar 

  • 42.

    Baker, J. E., Perez-Mendoza, J. & Beeman, R. W. Multiple mating potential in a pteromalid wasp determined by using an insecticide resistance marker. J. Entomol. Sci. 33, 165–170 (1998).

    Google Scholar 

  • 43.

    Yamamura, K. Transformation using (x + 0.5) to stabilize the variance of populations. Res. Popul. Ecol. 41, 229–234 (1999).

    Google Scholar 

  • 44.

    Hamilton, W. D. Extraordinary sex ratios. Science 156, 477–488 (1967).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 45.

    Waage, J. K. & Lane, J. B. The reproductive strategy of a parasitic wasp: II. Sex allocation and local mate competition in Trichogramma evanescens. J. Anim. Behav. 53, 417–426 (1984).

    Google Scholar 

  • 46.

    Strand, M. R. Variable sex ratio strategy of Telonomus heliothidis (Hymenoptera: Scelionidae): Adaptation to host and conspecific density. Oecologia 77, 219–224 (1988).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 47.

    Hassell, M. P. The Dynamics of Arthropod Predator-Prey Systems (Princeton University Press, 1978).

    MATH 

    Google Scholar 

  • 48.

    Godfray, H. C. J. Parasitoids: Behavioral and Evolutionary Ecology (Princeton University Press, 1994).

    Google Scholar 

  • 49.

    Wen, B., Smith, L. & Brower, J. H. Competition between Anisopteromalus calandrae and Choetospila elegans (Hymenoptera: Pteromalidae) at different parasitoid densities on immature maize weevils (Coleoptera: Curculionidae) in corn. Environ. Entomol. 23, 367–373 (1994).

    Google Scholar 

  • 50.

    Wen, B. & Brower, J. H. Competition between Anisopteromalus calandrae and Choetospila elegans (Hymenoptera: Pteromalidae) at different parasitoid densities on immature rice weevils (Coleoptera: Curculionidae) in wheat. Biol. Control 5, 151–157 (1995).

    Google Scholar 

  • 51.

    Campan, E. & Benrey, B. Behavior and performance of a specialist and a generalist parasitoid of bruchids on wild and cultivated beans. Biol. Control 30, 220–228 (2004).

    Google Scholar 

  • 52.

    Choi, W. I., Yoon, T. J. & Ryoo, M. I. Host-size-dependent feeding behaviour and progeny sex ratio of Anisopteromalus calandrae (Hym., Pteromalidae). J. Appl. Entomol. 125, 71–77 (2001).

    Google Scholar 

  • 53.

    Wai, K. M. Intra- and interspecific larval competition among wasps parasitic to bean weevil larvae. Thesis—University of Tsukuba, D.Sc. (A), no. 714 (1990).

  • 54.

    Heimpel, G. E. & Cock, M. J. W. Shifting paradigms in the history of classical biological control. Biocontrol 63, 27–37 (2018).

    Google Scholar 

  • 55.

    Miksanek, J. R. & Heimpel, G. E. Density-dependent lifespan and estimation of life expectancy for a parasitoid with implications for population dynamics. Oecologia 194, 311–320 (2020).

    PubMed 
    ADS 

    Google Scholar 

  • 56.

    Kidd, N. A. C. & Jervis, M. A. The effects of host-feeding behaviour on the dynamics of parasitoid–host interactions, and the implications for biological control. Res. Popul. Ecol. 31, 235–274 (1989).

    Google Scholar 

  • 57.

    Comins, H. N. & Wellings, P. W. Density-related parasitoid sex-ratio: Influence on host–parasitoid population dynamics. J. Anim. Ecol. 54, 583–594 (1985).

    Google Scholar 

  • 58.

    Hassell, M. P., Waage, J. K. & May, R. M. Variable parasitoid sex ratios and their effect on host–parasitoid dynamics. J. Anim. Ecol. 52, 889–904 (1983).

    Google Scholar 

  • 59.

    Skalski, G. T. & Gilliam, J. F. Functional responses with predator interference: Viable alternatives to the Holling Type II model. Ecology 82, 3083–3092 (2001).

    Google Scholar 

  • 60.

    Kratina, P., Vos, M., Bateman, A. & Anholt, B. R. Functional responses modified by predator density. Oecologia 159, 425–433 (2008).

    PubMed 
    ADS 

    Google Scholar 

  • 61.

    Freedman, H. I. Stability analysis of a predator–prey system with mutual interference and density-dependent death rates. Bull. Math. Biol. 41, 67–78 (1979).

    MathSciNet 
    MATH 

    Google Scholar 

  • 62.

    Erbe, L. H. & Freedman, H. I. Modeling persistence and mutual interference among subpopulations of ecological communities. Bull. Math. Biol. 47, 295–304 (1985).

    MathSciNet 
    MATH 

    Google Scholar 

  • 63.

    Alonso, D., Bartumeus, F. & Catalan, J. Mutual interference between predators can give rise to Turing spatial patterns. Ecology 83, 28–34 (2002).

    Google Scholar 

  • 64.

    May, R. M. & Hassell, M. P. The dynamics of multiparasitoid–host interactions. Am. Nat. 117, 234–261 (1981).

    MathSciNet 

    Google Scholar 

  • 65.

    Wajnberg, E., Curty, C. & Colazza, S. Genetic variation in the mechanisms of direct mutual interference in a parasitic wasp: Consequences in terms of patch-time allocation. J. Anim. Ecol. 73, 1179–1189 (2004).

    Google Scholar 

  • 66.

    Okuyama, T. Parasitoid aggregation and interference in host–parasitoid dynamics. Ecol. Entomol. 41, 473–479 (2016).

    Google Scholar 

  • 67.

    Jeffs, C. T. & Lewis, O. T. Effects of climate warming on host–parasitoid interactions. Ecol. Entomol. 38, 209–218 (2013).

    Google Scholar 

  • 68.

    Laws, A. N. Climate change effects on predator–prey interactions. Curr. Opin. Insect Sci. 23, 28–34 (2017).

    PubMed 

    Google Scholar 

  • 69.

    Tougeron, K., Brodeur, J., Le Lann, C. & van Baaren, J. How climate change affects the seasonal ecology of insect parasitoids. Ecol. Entomol. 45, 167–181 (2020).

    Google Scholar 

  • 70.

    Tuda, M. & Bonsall, M. B. Evolutionary and population dynamics of host–parasitoid interactions. Res. Popul. Ecol. 41, 81–91 (1999).

    Google Scholar 

  • 71.

    Outreman, Y. et al. Multi-scale and antagonist selection on life-history traits in parasitoids: A community ecology perspective. Funct. Ecol. 32, 736–751 (2018).

    Google Scholar 


  • Source: Ecology - nature.com

    SMART researchers develop method for early detection of bacterial infection in crops

    Scientists and musicians tackle climate change together