in

Impact of artificial light at night on diurnal plant-pollinator interactions

  • 1.

    Falchi, F. et al. The new world atlas of artificial night sky brightness. Sci. Adv. 2, e1600377 (2016).

    ADS 
    Article 

    Google Scholar 

  • 2.

    Kyba, C. C. et al. Artificially lit surface of earth at night increasing in radiance and extent. Sci. Adv. 3, e1701528 (2017).

    ADS 
    Article 

    Google Scholar 

  • 3.

    Longcore, T. & Rich, C. Ecological light pollution. Front. Ecol. Environ. 2, 191–198 (2004).

    Article 

    Google Scholar 

  • 4.

    Rich, C. & Longcore, T. Ecological Consequences of Artificial Night Lighting, (Island Press, 2013).

  • 5.

    Davies, T. W., Bennie, J. & Gaston, K. J. Street lighting changes the composition of invertebrate communities. Biol. Lett. rsbl20120216 8, 764–767 (2012).

  • 6.

    Gaston, K. J. & Bennie, J. Demographic effects of artificial nighttime lighting on animal populations. Environ. Rev. 22, 323–330 (2014).

    Article 

    Google Scholar 

  • 7.

    Desouhant, E., Gomes, E., Mondy, N. & Amat, I. Mechanistic, ecological, and evolutionary consequences of artificial light at night for insects: review and prospective. Entomologia Experimentalis et Applicata 167, 37–58 (2019).

    Article 

    Google Scholar 

  • 8.

    Sanders, D. & Gaston, K. J. How ecological communities respond to artificial light at night. J. Exp. Zool. Part A: Ecol. Integr. Physiol. 329, 394–400 (2018).

    Google Scholar 

  • 9.

    Dwyer, R. G., Bearhop, S., Campbell, H. A. & Bryant, D. M. Shedding light on light: benefits of anthropogenic illumination to a nocturnally foraging shorebird. J. Anim. Ecol. 82, 478–485 (2013).

    Article 

    Google Scholar 

  • 10.

    Blake, D., Hutson, A. M., Racey, P. A., Rydell, J. & Speakman, J. R. Use of lamplit roads by foraging bats in southern England. J. Zool. 234, 453–462 (1994).

    Article 

    Google Scholar 

  • 11.

    Polak, T., Korine, C., Yair, S. & Holderied, M. W. Differential effects of artificial lighting on flight and foraging behaviour of two sympatric bat species in a desert. J. Zool. 285, 21–27 (2011).

    Google Scholar 

  • 12.

    Spoelstra, K. et al. Response of bats to light with different spectra: Light-shy and agile bat presence is affected by white and green, but not red light. Proc. R. Soc. B: Biol. Sci. 284, 11–15 (2017).

    Article 

    Google Scholar 

  • 13.

    Straka, T. M., Wolf, M., Gras, P., Buchholz, S. & Voigt, C. C. Tree cover mediates the effect of artificial light on urban bats. Front. Ecol. Evol. 7, 91 (2019).

    Article 

    Google Scholar 

  • 14.

    Heiling, A. M. Why do nocturnal orb-web spiders (Araneidae) search for light? Behav. Ecol. 46, 43–49 (1999).

    Article 

    Google Scholar 

  • 15.

    Bennie, J., Davies, T. W., Cruse, D., Inger, R. & Gaston, K. J. Artificial light at night causes top-down and bottom-up trophic effects on invertebrate populations. J. Appl. Ecol. 55, 2698–2706 (2018).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Grenis, K. & Murphy, S. M. Direct and indirect effects of light pollution on the performance of an herbivorous insect. Insect Sci. 26, 770–776 (2019).

    Article 

    Google Scholar 

  • 17.

    McMunn, M. S. et al. Artificial light increases local predator abundance, predation rates, and herbivory. Environ. Entomol. 48, 1331–1339 (2019).

    Article 

    Google Scholar 

  • 18.

    Giavi, S., Blösch, S., Schuster, G. & Knop, E. Artificial light at night can modify ecosystem functioning beyond the lit area. Sci. Rep. 10, 1–11 (2020).

    Article 

    Google Scholar 

  • 19.

    Knop, E. et al. Artificial light at night as a new threat to pollination. Nature 548, 206–209 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 20.

    Macgregor, C. J., Evans, D. M., Fox, R. & Pocock, M. J. O. The dark side of street lighting: impacts on moths and evidence for the disruption of nocturnal pollen transport. Glob. Change Biol. 23, 697–707 (2017).

    ADS 
    Article 

    Google Scholar 

  • 21.

    Macgregor, C. J., Pocock, M. J. O., Fox, R. & Evans, D. M. Effects of street lighting technologies on the success and quality of pollination in a nocturnally pollinated plant. Ecosphere 10, 1–16 (2019).

  • 22.

    Junker, R. R. et al. Specialization on traits as basis for the niche-breadth of flower visitors and as structuring mechanism of ecological networks. Funct. Ecol. 27, 329–341 (2013).

    Article 

    Google Scholar 

  • 23.

    Bennie, J., Duffy, J. P., Davies, T. W., Correa-Cano, M. E. & Gaston, K. J. Global trends in exposure to light pollution in natural terrestrial ecosystems. Remote Sens. 7, 2715–2730 (2015).

    ADS 
    Article 

    Google Scholar 

  • 24.

    Bennie, J., Davies, T. W., Cruse, D. & Gaston, K. J. Ecological effects of artificial light at night on wild plants. J. Ecol. 104, 611–620 (2016).

    Article 

    Google Scholar 

  • 25.

    Bloch, G., Bar-Shai, N., Cytter, Y. & Green, R. Time is honey: circadian clocks of bees and flowers and how their interactions may influence ecological communities. Philos. Trans. R. Soc. B: Biol. Sci. 372, 20160256 (2017).

  • 26.

    Yon, F. et al. Fitness consequences of altering floral circadian oscillations for Nicotiana attenuata. J. Integr. Plant Biol. 59, 180–189 (2017).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Yon, F., Kessler, D., Joo, Y., Kim, S.-G. & Baldwin, I. T. Fitness consequences of a clock pollinator filter in Nicotiana attenuata flowers in nature. J. Integr. Plant Biol. 59, 805–809 (2017).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Fenske, M. P., Nguyen, L. A. P., Horn, E. K., Riffell, J. A. & Imaizumi, T. Circadian clocks of both plants and pollinators influence flower seeking behavior of the pollinator hawkmoth Manduca sexta. Sci. Rep. 8, 1–13 (2018).

    CAS 
    Article 

    Google Scholar 

  • 29.

    Rusman, Q., Lucas-Barbosa, D. & Poelman, E. H. Dealing with mutualists and antagonists: Specificity of plant-mediated interactions between herbivores and flower visitors, and consequences for plant fitness. Funct. Ecol. 32, 1022–1035 (2018).

    Article 

    Google Scholar 

  • 30.

    Rusman, Q., Lucas-Barbosa, D., Poelman, E. H. & Dicke, M. Ecology of plastic flowers. Trends Plant Sci. 24, 725–740 (2019).

  • 31.

    Barber, N. A., Adler, L. S., Theis, N., Hazzard, R. V. & Kiers, E. T. Herbivory reduces plant interactions with above-and belowground antagonists and mutualists. Ecology 93, 1560–1570 (2012).

    Article 

    Google Scholar 

  • 32.

    Liao, K., Gituru, R. W., Guo, Y.-H. & Wang, Q.-F. Effects of floral herbivory on foraging behaviour of bumblebees and female reproductive success in Pedicularis gruina (Orobanchaceae). Flora – Morphol., Distrib., Funct. Ecol. Plants 208, 562–569 (2013).

    Article 

    Google Scholar 

  • 33.

    Schiestl, F. P., Kirk, H., Bigler, L., Cozzolino, S. & Desurmont, G. A. Herbivory and floral signaling: phenotypic plasticity and tradeoffs between reproduction and indirect defense. N. Phytologist 203, 257–266 (2014).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Jacobsen, D. J. & Raguso, R. A. Lingering effects of herbivory and plant defenses on pollinators. Curr. Biol. 28, R1164–R1169 (2018).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Barber, N. A., Adler, L. S. & Bernardo, H. L. Effects of above-and belowground herbivory on growth, pollination, and reproduction in cucumber. Oecologia 165, 377–386 (2011).

    ADS 
    Article 

    Google Scholar 

  • 36.

    Poveda, K., Steffan-Dewenter, I., Scheu, S. & Tscharntke, T. Effects of below-and above-ground herbivores on plant growth, flower visitation and seed set. Oecologia 135, 601–605 (2003).

    ADS 
    Article 

    Google Scholar 

  • 37.

    Ivey, C. T. & Carr, D. E. Effects of herbivory and inbreeding on the pollinators and mating system of Mimulus guttatus (Phrymaceae). Am. J. Bot. 92, 1641–1649 (2005).

    Article 

    Google Scholar 

  • 38.

    Lucas-Barbosa, D. et al. Visual and odour cues: plant responses to pollination and herbivory affect the behaviour of flower visitors. Funct. Ecol. 30, 431–441 (2016).

    Article 

    Google Scholar 

  • 39.

    Dominoni, D. M. & Partecke, J. Does light pollution alter daylength? A test using light loggers on free-ranging European blackbirds (Turdus merula). Philos. Trans. R. Soc. Lond. Ser. B, Biol. Sci. 370, 20140118 (2015).

  • 40.

    Davies, T. W. & Smyth, T. Why artificial light at night should be a focus for global change research in the 21st century. Glob. Change Biol. 24, 872–882 (2018).

    ADS 
    Article 

    Google Scholar 

  • 41.

    Sage, R. F. Global change biology: a primer. Global Change Biol. 26, 3–30 (2019).

  • 42.

    Gibson, R. H., Knott, B., Eberlein, T. & Memmott, J. Sampling method influences the structure of plant-pollinator networks. Oikos 120, 822–831 (2011).

    Article 

    Google Scholar 

  • 43.

    R Core Team. R: a language and environment for statistical computing. (R Foundation for Statistical Computing, 2020).

  • 44.

    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using {lme4}. J. Stat. Softw. 67, 1–48 (2015).

    Article 

    Google Scholar 

  • 45.

    Giavi, S., Fontaine, C., Knop, E. Data and code for ‘Impact of artificial light at night on diurnal plant-pollinator interactions’ (Version v1) [Data set and data code]. Zenodo https://zenodo.org/record/4540407#.YCqYPTKg82w (2021).


  • Source: Ecology - nature.com

    Study predicts the oceans will start emitting ozone-depleting CFCs

    Understanding imperfections in fusion magnets