Falchi, F. et al. The new world atlas of artificial night sky brightness. Sci. Adv. 2, e1600377 (2016).
Google Scholar
Kyba, C. C. et al. Artificially lit surface of earth at night increasing in radiance and extent. Sci. Adv. 3, e1701528 (2017).
Google Scholar
Longcore, T. & Rich, C. Ecological light pollution. Front. Ecol. Environ. 2, 191–198 (2004).
Google Scholar
Rich, C. & Longcore, T. Ecological Consequences of Artificial Night Lighting, (Island Press, 2013).
Davies, T. W., Bennie, J. & Gaston, K. J. Street lighting changes the composition of invertebrate communities. Biol. Lett. rsbl20120216 8, 764–767 (2012).
Gaston, K. J. & Bennie, J. Demographic effects of artificial nighttime lighting on animal populations. Environ. Rev. 22, 323–330 (2014).
Google Scholar
Desouhant, E., Gomes, E., Mondy, N. & Amat, I. Mechanistic, ecological, and evolutionary consequences of artificial light at night for insects: review and prospective. Entomologia Experimentalis et Applicata 167, 37–58 (2019).
Google Scholar
Sanders, D. & Gaston, K. J. How ecological communities respond to artificial light at night. J. Exp. Zool. Part A: Ecol. Integr. Physiol. 329, 394–400 (2018).
Dwyer, R. G., Bearhop, S., Campbell, H. A. & Bryant, D. M. Shedding light on light: benefits of anthropogenic illumination to a nocturnally foraging shorebird. J. Anim. Ecol. 82, 478–485 (2013).
Google Scholar
Blake, D., Hutson, A. M., Racey, P. A., Rydell, J. & Speakman, J. R. Use of lamplit roads by foraging bats in southern England. J. Zool. 234, 453–462 (1994).
Google Scholar
Polak, T., Korine, C., Yair, S. & Holderied, M. W. Differential effects of artificial lighting on flight and foraging behaviour of two sympatric bat species in a desert. J. Zool. 285, 21–27 (2011).
Spoelstra, K. et al. Response of bats to light with different spectra: Light-shy and agile bat presence is affected by white and green, but not red light. Proc. R. Soc. B: Biol. Sci. 284, 11–15 (2017).
Google Scholar
Straka, T. M., Wolf, M., Gras, P., Buchholz, S. & Voigt, C. C. Tree cover mediates the effect of artificial light on urban bats. Front. Ecol. Evol. 7, 91 (2019).
Google Scholar
Heiling, A. M. Why do nocturnal orb-web spiders (Araneidae) search for light? Behav. Ecol. 46, 43–49 (1999).
Google Scholar
Bennie, J., Davies, T. W., Cruse, D., Inger, R. & Gaston, K. J. Artificial light at night causes top-down and bottom-up trophic effects on invertebrate populations. J. Appl. Ecol. 55, 2698–2706 (2018).
Google Scholar
Grenis, K. & Murphy, S. M. Direct and indirect effects of light pollution on the performance of an herbivorous insect. Insect Sci. 26, 770–776 (2019).
Google Scholar
McMunn, M. S. et al. Artificial light increases local predator abundance, predation rates, and herbivory. Environ. Entomol. 48, 1331–1339 (2019).
Google Scholar
Giavi, S., Blösch, S., Schuster, G. & Knop, E. Artificial light at night can modify ecosystem functioning beyond the lit area. Sci. Rep. 10, 1–11 (2020).
Google Scholar
Knop, E. et al. Artificial light at night as a new threat to pollination. Nature 548, 206–209 (2017).
Google Scholar
Macgregor, C. J., Evans, D. M., Fox, R. & Pocock, M. J. O. The dark side of street lighting: impacts on moths and evidence for the disruption of nocturnal pollen transport. Glob. Change Biol. 23, 697–707 (2017).
Google Scholar
Macgregor, C. J., Pocock, M. J. O., Fox, R. & Evans, D. M. Effects of street lighting technologies on the success and quality of pollination in a nocturnally pollinated plant. Ecosphere 10, 1–16 (2019).
Junker, R. R. et al. Specialization on traits as basis for the niche-breadth of flower visitors and as structuring mechanism of ecological networks. Funct. Ecol. 27, 329–341 (2013).
Google Scholar
Bennie, J., Duffy, J. P., Davies, T. W., Correa-Cano, M. E. & Gaston, K. J. Global trends in exposure to light pollution in natural terrestrial ecosystems. Remote Sens. 7, 2715–2730 (2015).
Google Scholar
Bennie, J., Davies, T. W., Cruse, D. & Gaston, K. J. Ecological effects of artificial light at night on wild plants. J. Ecol. 104, 611–620 (2016).
Google Scholar
Bloch, G., Bar-Shai, N., Cytter, Y. & Green, R. Time is honey: circadian clocks of bees and flowers and how their interactions may influence ecological communities. Philos. Trans. R. Soc. B: Biol. Sci. 372, 20160256 (2017).
Yon, F. et al. Fitness consequences of altering floral circadian oscillations for Nicotiana attenuata. J. Integr. Plant Biol. 59, 180–189 (2017).
Google Scholar
Yon, F., Kessler, D., Joo, Y., Kim, S.-G. & Baldwin, I. T. Fitness consequences of a clock pollinator filter in Nicotiana attenuata flowers in nature. J. Integr. Plant Biol. 59, 805–809 (2017).
Google Scholar
Fenske, M. P., Nguyen, L. A. P., Horn, E. K., Riffell, J. A. & Imaizumi, T. Circadian clocks of both plants and pollinators influence flower seeking behavior of the pollinator hawkmoth Manduca sexta. Sci. Rep. 8, 1–13 (2018).
Google Scholar
Rusman, Q., Lucas-Barbosa, D. & Poelman, E. H. Dealing with mutualists and antagonists: Specificity of plant-mediated interactions between herbivores and flower visitors, and consequences for plant fitness. Funct. Ecol. 32, 1022–1035 (2018).
Google Scholar
Rusman, Q., Lucas-Barbosa, D., Poelman, E. H. & Dicke, M. Ecology of plastic flowers. Trends Plant Sci. 24, 725–740 (2019).
Barber, N. A., Adler, L. S., Theis, N., Hazzard, R. V. & Kiers, E. T. Herbivory reduces plant interactions with above-and belowground antagonists and mutualists. Ecology 93, 1560–1570 (2012).
Google Scholar
Liao, K., Gituru, R. W., Guo, Y.-H. & Wang, Q.-F. Effects of floral herbivory on foraging behaviour of bumblebees and female reproductive success in Pedicularis gruina (Orobanchaceae). Flora – Morphol., Distrib., Funct. Ecol. Plants 208, 562–569 (2013).
Google Scholar
Schiestl, F. P., Kirk, H., Bigler, L., Cozzolino, S. & Desurmont, G. A. Herbivory and floral signaling: phenotypic plasticity and tradeoffs between reproduction and indirect defense. N. Phytologist 203, 257–266 (2014).
Google Scholar
Jacobsen, D. J. & Raguso, R. A. Lingering effects of herbivory and plant defenses on pollinators. Curr. Biol. 28, R1164–R1169 (2018).
Google Scholar
Barber, N. A., Adler, L. S. & Bernardo, H. L. Effects of above-and belowground herbivory on growth, pollination, and reproduction in cucumber. Oecologia 165, 377–386 (2011).
Google Scholar
Poveda, K., Steffan-Dewenter, I., Scheu, S. & Tscharntke, T. Effects of below-and above-ground herbivores on plant growth, flower visitation and seed set. Oecologia 135, 601–605 (2003).
Google Scholar
Ivey, C. T. & Carr, D. E. Effects of herbivory and inbreeding on the pollinators and mating system of Mimulus guttatus (Phrymaceae). Am. J. Bot. 92, 1641–1649 (2005).
Google Scholar
Lucas-Barbosa, D. et al. Visual and odour cues: plant responses to pollination and herbivory affect the behaviour of flower visitors. Funct. Ecol. 30, 431–441 (2016).
Google Scholar
Dominoni, D. M. & Partecke, J. Does light pollution alter daylength? A test using light loggers on free-ranging European blackbirds (Turdus merula). Philos. Trans. R. Soc. Lond. Ser. B, Biol. Sci. 370, 20140118 (2015).
Davies, T. W. & Smyth, T. Why artificial light at night should be a focus for global change research in the 21st century. Glob. Change Biol. 24, 872–882 (2018).
Google Scholar
Sage, R. F. Global change biology: a primer. Global Change Biol. 26, 3–30 (2019).
Gibson, R. H., Knott, B., Eberlein, T. & Memmott, J. Sampling method influences the structure of plant-pollinator networks. Oikos 120, 822–831 (2011).
Google Scholar
R Core Team. R: a language and environment for statistical computing. (R Foundation for Statistical Computing, 2020).
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using {lme4}. J. Stat. Softw. 67, 1–48 (2015).
Google Scholar
Giavi, S., Fontaine, C., Knop, E. Data and code for ‘Impact of artificial light at night on diurnal plant-pollinator interactions’ (Version v1) [Data set and data code]. Zenodo https://zenodo.org/record/4540407#.YCqYPTKg82w (2021).
Source: Ecology - nature.com