in

Impact of diesel and biodiesel contamination on soil microbial community activity and structure

  • 1.

    Mnif, I., Sahnoun, R. & Ellouz-Chaabouni, S. Application of bacterial biosurfactants for enhanced removal and biodegradation of diesel oil. Process Saf. Environ. Prot. 109, 72–81 (2017).

    CAS 
    Article 

    Google Scholar 

  • 2.

    Abioye, O. P. Biological remediation of hydrocarbon and heavy metals contaminated soil. In Soil Contamination (ed. Pascucci, S.) 127–142 (InTech Europe, 2011).

    Google Scholar 

  • 3.

    Zarinkamar, F., Reypour, F. & Soleimanpour, S. Effect of diesel fuel contaminated soil on the germination and the growth of Festuca arundinacea. Res. J. Chem. Environ. Sci. 1, 37–41 (2013).

    Google Scholar 

  • 4.

    Ashnani, M. H. M., Johari, A., Hashim, H. & Hasani, E. A source of renewable energy in Malaysia, why biodiesel? Renew. Sustain. Energy Rev. 35, 244–257 (2014).

    Article 

    Google Scholar 

  • 5.

    Bücker, F. et al. Impact of biodiesel on biodeterioration of stored Brazilian diesel oil. Int. Biodeterior. Biodegrad. 65, 172–178 (2011).

    Article 
    CAS 

    Google Scholar 

  • 6.

    Hawrot-Paw, M. & Izwikow, M. Ecotoxicologial effects of biodiesel in the soil. J. Ecol. Eng. 16, 34–39 (2015).

    Article 

    Google Scholar 

  • 7.

    Restrepo-Flórez, J.-M., Bassi, A., Rehmann, L. & Thompson, M. R. Effect of biodiesel addition on microbial community structure in a simulated fuel storage system. Bioresour. Technol. 147, 456–463 (2013).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 8.

    Silva, G. S. et al. Biodegradability of soy biodiesel in microcosm experiments using soil from the Atlantic Rain Forest. Appl. Soil Ecol. 55, 27–35 (2012).

    Article 

    Google Scholar 

  • 9.

    Prosser, J. I. Dispersing misconceptions and identifying opportunities for the use of ‘omics’ in soil microbial ecology. Nat. Rev. Microbiol. 13, 439–446 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 10.

    Hawrot-Paw, M. & Martynus, M. The influence of diesel fuel and biodiesel on soil microbial biomass. Pol. J. Environ. Stud. 20, 497–501 (2011).

    CAS 

    Google Scholar 

  • 11.

    Lahel, A. et al. Effect of process parameters on the bioremediation of diesel contaminated soil by mixed microbial consortia. Int. Biodeterior. Biodegrad. 113, 375 (2016).

    CAS 
    Article 

    Google Scholar 

  • 12.

    Nwankwegu, A. S., Orji, M. U. & Onwosi, C. O. Studies on organic and in-organic biostimulants in bioremediation of diesel-contaminated arable soil. Chemosphere 162, 148–156 (2016).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 13.

    Woźniak-Karczewska, M. et al. Effect of bioaugmentation on long-term biodegradation of diesel/biodiesel blends in soil microcosms. Sci. Total Environ. 671, 948–958 (2019).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 14.

    Caspi, R. et al. The MetaCyc database of metabolic pathways and enzymes. Nucleic Acids Res. 46, D633–D639 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 15.

    Lapinskiene, A., Martinkus, P. & Rebzdaite, V. Eco-toxicological studies of diesel and biodiesel fuels in aerated soil. Environ. Pollut. 142, 432–437 (2006).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 16.

    Schiewer, S. & Horel, A. Biodiesel addition influences biodegradation rates of fresh and artificially weathered diesel fuel in Alaskan sand. J. Cold Reg. Eng. 31, 1–14 (2017).

    Article 

    Google Scholar 

  • 17.

    Schreier, C. G., Walker, W. J., Burns, J. & Wilkenfeld, R. Total organic carbon as a screening method for petroleum hydrocarbons. Chemosphere 39, 503–510 (1999).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 18.

    Nimmo, M. Carbon. In Encyclopedia of Analytical Science (eds Worsfold, P. & Alan Townshend, C. P.) 453–457 (Elsevier, 2005).

    Google Scholar 

  • 19.

    Margesin, R. & Schinner, F. Bioremediation of diesel-oil-contaminated alpine soils at low temperatures. Appl. Microbiol. Biotechnol. 47, 462–468 (1997).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Møller, J., Winther, P., Lund, B., Kirkebjerg, K. & Westermann, P. Bioventing of diesel oil-contaminated soil: Comparison of degradation rates in soil based on actual oil concentration and on respirometric data. J. Ind. Microbiol. 16, 110–116 (1996).

    Article 

    Google Scholar 

  • 21.

    Nakatsu, C. H. Microbial processes: Community analysis. Ref. Modul. Earth Syst. Environ. Sci. https://doi.org/10.1016/B978-0-12-409548-9.05218-0 (2013).

    Article 

    Google Scholar 

  • 22.

    Margesin, R., Hämmerle, M. & Tscherko, D. Microbial activity and community composition during bioremediation of diesel-oil-contaminated soil: Effects of hydrocarbon concentration, fertilizers, and incubation time. Microb. Ecol. 53, 259–269 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 23.

    Owsianiak, M. et al. Biodegradation of diesel/biodiesel blends by a consortium of hydrocarbon degraders: Effect of the type of blend and the addition of biosurfactants. Bioresour. Technol. 100, 1497–1500 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 24.

    Quideau, S. A. et al. Extraction and analysis of microbial phospholipid fatty acids in soils. J. Vis. Exp. https://doi.org/10.3791/54360 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 25.

    Frostegård, Å., Tunlid, A. & Bååth, E. Use and misuse of PLFA measurements in soils. Soil Biol. Biochem. 43, 1–5 (2010).

    Google Scholar 

  • 26.

    Ruess, L. & Chamberlain, P. M. The fat that matters: Soil food web analysis using fatty acids and their carbon stable isotope signature. Soil Biol. Biochem. 42, 1898–1910 (2010).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Davila, S. et al. Actinobacteria: Current research and perspectives for bioremediation of pesticides and heavy metals. Chemosphere 166, 41–62 (2017).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 28.

    Sutton, N. B. et al. Impact of long-term diesel contamination on soil microbial cummunity structure. Appl. Environ. Microbiol. 79, 619–630 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 29.

    Kersters, K., Vos, P. D. E., Gillis, M., Swings, J. & Vandamme, P. Introduction to the Proteobacteria. In The Prokaryotes: A Handbook on the Biology of Bacteria (eds Dworkin, M. et al.) 3–37 (Springer, 2006).

    Google Scholar 

  • 30.

    Bell, T. H. et al. Predictable bacterial composition and hydrocarbon degradation in Arctic soils following diesel and nutrient disturbance. ISME J. 7, 1200–1210 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 31.

    Brzeszcz, J. & Kaszycki, P. Aerobic bacteria degrading both n-alkanes and aromatic hydrocarbons: An undervalued strategy for metabolic diversity and flexibility. Biodegradation 29, 359–407 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 32.

    Elumalai, P. et al. Role of thermophilic bacteria (Bacillus and, Geobacillus) on crude oil degradation and biocorrosion in oil reservoir environment. 3Biotech 9, 79 (2019).

    Google Scholar 

  • 33.

    Mitter, E. K., de Freitas, J. R. & Germida, J. J. Bacterial root microbiome of plants growing in oil sands reclamation covers. Front. Microbiol. https://doi.org/10.3389/fmicb.2017.00849 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 34.

    Bundy, J. G., Paton, G. I. & Campbell, C. D. Microbial communities in different soil types do not converge after diesel contamination. J. Appl. Microbiol. 92, 276–288 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 35.

    Korenblum, E., Souza, D. B., Penna, M. & Seldin, L. Molecular analysis of the bacterial communities in crude oil Samples from two Brazilian offshore petroleum platforms. Int. J. Microbiol. 2012, 1–8 (2012).

    Article 
    CAS 

    Google Scholar 

  • 36.

    Kim, T. J., Lee, E. Y., Kim, Y. J., Cho, K. S. & Ryu, H. W. Degradation of polyaromatic hydrocarbons by Burkholderia cepacia 2A–12. World J. Microbiol. Biotechnol. 19, 411–417 (2003).

    CAS 
    Article 

    Google Scholar 

  • 37.

    Revathy, T., Jayasri, M. A. & Suthindhiran, K. Biodegradation of PAHs by Burkholderia sp. VITRSB1 isolated from marine sediments. Scientifica (Cairo) 2015, 1–9 (2015).

    Google Scholar 

  • 38.

    Ramos, D. T., da Silva, M. L. B., Nossa, C. W., Alvarez, P. J. J. & Corseuil, H. X. Assessment of microbial communities associated with fermentative-methanogenic biodegradation of aromatic hydrocarbons in groundwater contaminated with a biodiesel blend (B20). Biodegradation 25, 681–691 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 39.

    Whyte, L. G. et al. Gene cloning and characterization of multiple alkane hydroxylase systems in Rhodococcus strains Q15 and NRRL B-16531. Appl. Environ. Microbiol. 68, 5933–5942 (2002).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 40.

    Lee, M., Kim, M. K., Singleton, I., Goodfellow, M. & Lee, S.-T. Enhanced biodegradation of diesel oil by a newly identified Rhodococcus baikonurensis EN3 in the presence of mycolic acid. J. Appl. Microbiol. 100, 325–333 (2006).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 41.

    Bateman, J. N., Speer, B., Feduik, L. & Hartline, R. A. Naphthalene association and uptake in Pseudomonas putida. J. Bacteriol. 166, 155–161 (1986).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 42.

    Rentz, J. A., Alvarez, P. J. J. & Schnoor, J. L. Repression of Pseudomonas putida phenanthrene-degrading activity by plant root extracts and exudates. Environ. Microbiol. 6, 574–583 (2004).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 43.

    Shukor, M. Y. et al. Isolation and characterization of Pseudomonas diesel-degrading strain from Antartica. J. Environ. Biol. 30, 1–6 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 44.

    Meyer, D. D. et al. Bioremediation strategies for diesel and biodiesel in oxisol from southern Brazil. Int. Biodeterior. Biodegrad. 95, 356–363 (2014).

    CAS 
    Article 

    Google Scholar 

  • 45.

    Taccari, M., Milanovic, V., Comitini, F., Casucci, C. & Ciani, M. Effects of biostimulation and bioaugmentation on diesel removal and bacterial community. Int. Biodeterior. Biodegrad. 66, 39–46 (2012).

    CAS 
    Article 

    Google Scholar 

  • 46.

    Fosso-Kankeu, E. et al. Adaptation behaviour of bacterial species and impact on the biodegradation of biodiesel-diesel. Braz. J. Chem. Eng. 34, 469–480 (2017).

    CAS 
    Article 

    Google Scholar 

  • 47.

    Lutz, G., Chavarría, M., Arias, M. L. & Mata-Segreda, J. F. Microbial degradation of palm (Elaeis guineensis) biodiesel. Rev. Biol. Trop. 54, 59–63 (2006).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 48.

    Holmes, A. J. et al. Diverse, yet-to-be-cultured members of the Rubrobacter subdivision of the Actinobacteria are widespread in Australian arid soils. FEMS Microbiol. Ecol. 33, 111–120 (2000).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 49.

    Wollherr, A. et al. Pyrosequencing-based assessment of bacterial community structure along different management types in German forest and grassland soils. PLoS ONE 6, 1–12 (2011).

    Google Scholar 

  • 50.

    Crampon, M., Bodilis, J. & Portet-Koltalo, F. Linking initial soil bacterial diversity and polycyclic aromatic hydrocarbons (PAHs) degradation potential. J. Hazard. Mater. 359, 500–509 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 51.

    Wang, L., Li, F., Zhan, Y. & Zhu, L. Shifts in microbial community structure during in situ surfactant-enhanced bioremediation of polycyclic aromatic hydrocarbon-contaminated soil. Environ. Sci. Pollut. Res. 23, 14451–14461 (2016).

    CAS 
    Article 

    Google Scholar 

  • 52.

    van Beilen, J. B., Kingma, J. & Witholt, B. Substrate specificity of the alkane hydroxylase system of Pseudomonas oleovorans GPo1. Enzyme Microb. Technol. 16, 904–911 (1994).

    Article 

    Google Scholar 

  • 53.

    Mukherjee, A. et al. Bioinformatic approaches including predictive metagenomic profiling reveal characteristics of bacterial response to petroleum hydrocarbon contamination in diverse environments. Sci. Rep. 7, 1108 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 54.

    Ono, K., Nozaki, M. & Hayaishi, O. Purification and some properties of protocatechuate 4,5-dioxygenase. Biochim. Biophys. Acta Enzymol. 220, 224–238 (1970).

    CAS 
    Article 

    Google Scholar 

  • 55.

    Fung, H. K. H. et al. Biochemical and biophysical characterisation of haloalkane dehalogenases DmrA and DmrB in Mycobacterium strain JS60 and their role in growth on haloalkanes. Mol. Microbiol. 97, 439–453 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 56.

    Kang, Y.-S. & Park, W. Protection against diesel oil toxicity by sodium chloride-induced exopolysaccharides in Acinetobacter sp. strain DR1. J. Biosci. Bioeng. 109, 118–123 (2010).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 57.

    Ramadass, K., Megharaj, M., Venkateswarlu, K. & Naidu, R. Ecotoxicity of measured concentrations of soil-applied diesel: Effects on earthworm survival, dehydrogenase, urease and nitrification activities. Appl. Soil Ecol. 119, 1–7 (2017).

    Article 

    Google Scholar 

  • 58.

    Moreno, R. & Rojo, F. Enzymes for aerobic degradation of alkanes in bacteria. In Aerobic Utilization of Hydrocarbons, Oils and Lipids (ed. Rojo, F.) 1–25 (Springer, 2017).

    Google Scholar 

  • 59.

    Mitter, E. K., de Freitas, J. R. & Germida, J. J. Hydrocarbon-degrading genes in root endophytic communities on oil sands reclamation covers. Int. J. Phytoremediat. 22, 703–712 (2020).

    CAS 
    Article 

    Google Scholar 

  • 60.

    Mitter, E. K., Kataoka, R., de Freitas, J. R. & Germida, J. J. Potential use of endophytic root bacteria and host plants to degrade hydrocarbons. Int. J. Phytoremediat. 21, 928–938 (2019).

    CAS 
    Article 

    Google Scholar 

  • 61.

    Rojo, F. Degradation of alkanes by bacteria: Minireview. Environ. Microbiol. 11, 2477–2490 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 62.

    Dincer, K. Lower emissions from biodiesel combustion. Energy Sources A Recov. Util. Environ. Eff. 30, 963–968 (2008).

    CAS 
    Article 

    Google Scholar 

  • 63.

    Miri, M., Bambai, B., Tabandeh, F., Sadeghizadeh, M. & Kamali, N. Production of a recombinant alkane hydroxylase (AlkB2) from Alcanivorax borkumensis. Biotechnol. Lett. 32, 497–502 (2010).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 64.

    Schomburg, D. & Stephan, D. Rubredoxin-NAD+ reductase. In Enzyme Handbook (eds Schomburg, D. & Stephan, D.) 917–920 (Springer, 1994).

    Google Scholar 

  • 65.

    Eggink, G., Engel, H., Vriend, G., Terpstra, P. & Witholt, B. Rubredoxin reductase of Pseudomonas oleovorans. J. Mol. Biol. 212, 135–142 (1990).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 66.

    Hagelueken, G. et al. Crystal structure of the electron transfer complex rubredoxin rubredoxin reductase of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. 104, 12276–12281 (2007).

    ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 67.

    Lyu, Y., Zheng, W., Zheng, T. & Tian, Y. Biodegradation of polycyclic aromatic hydrocarbons by Novosphingobium pentaromativorans US6-1. PLoS ONE 9, e101438 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 68.

    Wang, J. et al. Comparative genomics of degradative Novosphingobium strains with special reference to microcystin-degrading Novosphingobium sp. THN1. Front. Microbiol. 9, 1–17 (2018).

    Article 

    Google Scholar 

  • 69.

    Dhillon, G. S., Amichev, B. Y., de Freitas, J. R. & van Rees, K. Accurate and precise measurement of organic carbon content in carbonate-rich soils. Commun. Soil Sci. Plant Anal. 3624, 2707–2720 (2015).

    Article 
    CAS 

    Google Scholar 

  • 70.

    McKeague, J. A. Manual on SOIL sampling and Methods of Analysis (Canadian Society of Soil Science, 1978).

    Google Scholar 

  • 71.

    Laverty, D. H. & Bollo-Kamara, A. Recommended Methods of Soil Analysis for Canadian Prairie Agricultural Soils (Alberta Agriculture, 1988).

    Google Scholar 

  • 72.

    Qian, P., Schoenaru, J. J. & Karamanos, R. E. Simultaneous extraction of available phosphorus and potassium with a new soil test: A modification of Kelowna extraction. Commun. Soil Sci. Plant Anal. 25, 627–635 (1994).

    CAS 
    Article 

    Google Scholar 

  • 73.

    Anderson, J. P. E. & Domsch, K. H. A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biol. Biochem. 10, 215–221 (1978).

    CAS 
    Article 

    Google Scholar 

  • 74.

    de Freitas, J. R., Schoenau, J. J., Boyetchko, S. M. & Cyrenne, S. A. Soil microbial populations, community composition, and activity as affected by repeated applications of hog and cattle manure in eastern Saskatchewan. Can. J. Microbiol. 49, 538–548 (2003).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 75.

    Ramirez, K. S., Craine, J. M. & Fierer, N. Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes. Glob. Change Biol. 18, 1918–1927 (2012).

    ADS 
    Article 

    Google Scholar 

  • 76.

    Craine, J. M., Fierer, N. & McLauchlan, K. K. Widespread coupling between the rate and temperature sensitivity of organic matter decay. Nat. Geosci. 3, 854–857 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 77.

    Helgason, B. L., Walley, F. L. & Germida, J. J. Long-term no-till management affects microbial biomass but not community composition in Canadian prairie agroecosytems. Soil Biol. Biochem. 42, 2192–2202 (2010).

    CAS 
    Article 

    Google Scholar 

  • 78.

    Drenovsky, R. E., Elliott, G. N., Graham, K. J. & Scow, K. M. Comparison of phospholipid fatty acid (PLFA) and total soil fatty acid methyl esters (TSFAME) for characterizing soil microbial communities. Soil Biol. Biochem. 36, 1793–1800 (2004).

    CAS 
    Article 

    Google Scholar 

  • 79.

    Macdonald, L. M., Paterson, E., Dawson, L. A. & McDonald, A. J. S. Short-term effects of defoliation on the soil microbial community associated with two contrasting Lolium perenne cultivars. Soil Biol. Biochem. 36, 489–498 (2004).

    CAS 
    Article 

    Google Scholar 

  • 80.

    Zelles, L., Bai, Q. Y., Beck, T. & Beese, F. Signature fatty acids in phospholipids and lipopolysaccharides as indicators of microbial biomass and community structure in agricultural soils. Soil Biol. Biochem. 24, 317–323 (1992).

    CAS 
    Article 

    Google Scholar 

  • 81.

    Hynes, H. M. & Germida, J. J. Relationship between ammonia oxidizing bacteria and bioavailable nitrogen in harvested forest soils of central Alberta. Soil Biol. Biochem. 46, 18–25 (2012).

    CAS 
    Article 

    Google Scholar 

  • 82.

    McCune, B. & Mefford, M. J. Multivariate analysis of Ecological Data (2011).

  • 83.

    Helgason, B. L., Walley, F. L. & Germida, J. J. No-till soil management increases microbial biomass and alters community profiles in soil aggregates. Appl. Soil Ecol. 46, 390–397 (2010).

    Article 

    Google Scholar 

  • 84.

    McCune, B. & Grace, J. B. Analysis of Ecological Communities (2002).

  • 85.

    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 86.

    Boylen, E. et al. QIIME 2: Reproducible, interactive, scalable, and extensible microbiome data science. PeerJ Prepr. https://doi.org/10.7287/peerj.preprints.27295 (2018).

    Article 

    Google Scholar 

  • 87.

    Caporaso, J. G. et al. Moving pictures of the human microbiome. Genome Biol. 12, 1–8 (2011).

    Article 

    Google Scholar 

  • 88.

    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 89.

    Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral. Ecol. 26, 32–46 (2001).

    Google Scholar 

  • 90.

    Oksanen, J. et al. Community Ecology Package ‘vegan’ (2020).

  • 91.

    Hamilton, N. ggtern: An Extension to ‘ggplot2’, for the Creation of Ternary Diagrams (2018).

  • 92.

    Douglas, G. M. et al. PICRUSt2 for prediction of metagenome functions. Nat. Biotechnol. 38, 685–688 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 93.

    Langille, M. G. I. et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31, 814–821 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 94.

    Kanehisa, M., Sato, Y., Furumichi, M., Morishima, K. & Tanabe, M. New approach for understanding genome variations in KEGG. Nucleic Acids Res. 47, D590–D595 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 95.

    Parks, D. H. & Beiko, R. G. Identifying biologically relevant differences between metagenomic communities. Bioinformatics 26, 715–721 (2010).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    A graduate student who goes to extremes

    MIT students and alumni “hack” Hong Kong Kowloon East