Mnif, I., Sahnoun, R. & Ellouz-Chaabouni, S. Application of bacterial biosurfactants for enhanced removal and biodegradation of diesel oil. Process Saf. Environ. Prot. 109, 72–81 (2017).
Google Scholar
Abioye, O. P. Biological remediation of hydrocarbon and heavy metals contaminated soil. In Soil Contamination (ed. Pascucci, S.) 127–142 (InTech Europe, 2011).
Zarinkamar, F., Reypour, F. & Soleimanpour, S. Effect of diesel fuel contaminated soil on the germination and the growth of Festuca arundinacea. Res. J. Chem. Environ. Sci. 1, 37–41 (2013).
Ashnani, M. H. M., Johari, A., Hashim, H. & Hasani, E. A source of renewable energy in Malaysia, why biodiesel? Renew. Sustain. Energy Rev. 35, 244–257 (2014).
Google Scholar
Bücker, F. et al. Impact of biodiesel on biodeterioration of stored Brazilian diesel oil. Int. Biodeterior. Biodegrad. 65, 172–178 (2011).
Google Scholar
Hawrot-Paw, M. & Izwikow, M. Ecotoxicologial effects of biodiesel in the soil. J. Ecol. Eng. 16, 34–39 (2015).
Google Scholar
Restrepo-Flórez, J.-M., Bassi, A., Rehmann, L. & Thompson, M. R. Effect of biodiesel addition on microbial community structure in a simulated fuel storage system. Bioresour. Technol. 147, 456–463 (2013).
Google Scholar
Silva, G. S. et al. Biodegradability of soy biodiesel in microcosm experiments using soil from the Atlantic Rain Forest. Appl. Soil Ecol. 55, 27–35 (2012).
Google Scholar
Prosser, J. I. Dispersing misconceptions and identifying opportunities for the use of ‘omics’ in soil microbial ecology. Nat. Rev. Microbiol. 13, 439–446 (2015).
Google Scholar
Hawrot-Paw, M. & Martynus, M. The influence of diesel fuel and biodiesel on soil microbial biomass. Pol. J. Environ. Stud. 20, 497–501 (2011).
Google Scholar
Lahel, A. et al. Effect of process parameters on the bioremediation of diesel contaminated soil by mixed microbial consortia. Int. Biodeterior. Biodegrad. 113, 375 (2016).
Google Scholar
Nwankwegu, A. S., Orji, M. U. & Onwosi, C. O. Studies on organic and in-organic biostimulants in bioremediation of diesel-contaminated arable soil. Chemosphere 162, 148–156 (2016).
Google Scholar
Woźniak-Karczewska, M. et al. Effect of bioaugmentation on long-term biodegradation of diesel/biodiesel blends in soil microcosms. Sci. Total Environ. 671, 948–958 (2019).
Google Scholar
Caspi, R. et al. The MetaCyc database of metabolic pathways and enzymes. Nucleic Acids Res. 46, D633–D639 (2018).
Google Scholar
Lapinskiene, A., Martinkus, P. & Rebzdaite, V. Eco-toxicological studies of diesel and biodiesel fuels in aerated soil. Environ. Pollut. 142, 432–437 (2006).
Google Scholar
Schiewer, S. & Horel, A. Biodiesel addition influences biodegradation rates of fresh and artificially weathered diesel fuel in Alaskan sand. J. Cold Reg. Eng. 31, 1–14 (2017).
Google Scholar
Schreier, C. G., Walker, W. J., Burns, J. & Wilkenfeld, R. Total organic carbon as a screening method for petroleum hydrocarbons. Chemosphere 39, 503–510 (1999).
Google Scholar
Nimmo, M. Carbon. In Encyclopedia of Analytical Science (eds Worsfold, P. & Alan Townshend, C. P.) 453–457 (Elsevier, 2005).
Margesin, R. & Schinner, F. Bioremediation of diesel-oil-contaminated alpine soils at low temperatures. Appl. Microbiol. Biotechnol. 47, 462–468 (1997).
Google Scholar
Møller, J., Winther, P., Lund, B., Kirkebjerg, K. & Westermann, P. Bioventing of diesel oil-contaminated soil: Comparison of degradation rates in soil based on actual oil concentration and on respirometric data. J. Ind. Microbiol. 16, 110–116 (1996).
Google Scholar
Nakatsu, C. H. Microbial processes: Community analysis. Ref. Modul. Earth Syst. Environ. Sci. https://doi.org/10.1016/B978-0-12-409548-9.05218-0 (2013).
Google Scholar
Margesin, R., Hämmerle, M. & Tscherko, D. Microbial activity and community composition during bioremediation of diesel-oil-contaminated soil: Effects of hydrocarbon concentration, fertilizers, and incubation time. Microb. Ecol. 53, 259–269 (2007).
Google Scholar
Owsianiak, M. et al. Biodegradation of diesel/biodiesel blends by a consortium of hydrocarbon degraders: Effect of the type of blend and the addition of biosurfactants. Bioresour. Technol. 100, 1497–1500 (2009).
Google Scholar
Quideau, S. A. et al. Extraction and analysis of microbial phospholipid fatty acids in soils. J. Vis. Exp. https://doi.org/10.3791/54360 (2016).
Google Scholar
Frostegård, Å., Tunlid, A. & Bååth, E. Use and misuse of PLFA measurements in soils. Soil Biol. Biochem. 43, 1–5 (2010).
Ruess, L. & Chamberlain, P. M. The fat that matters: Soil food web analysis using fatty acids and their carbon stable isotope signature. Soil Biol. Biochem. 42, 1898–1910 (2010).
Google Scholar
Davila, S. et al. Actinobacteria: Current research and perspectives for bioremediation of pesticides and heavy metals. Chemosphere 166, 41–62 (2017).
Google Scholar
Sutton, N. B. et al. Impact of long-term diesel contamination on soil microbial cummunity structure. Appl. Environ. Microbiol. 79, 619–630 (2013).
Google Scholar
Kersters, K., Vos, P. D. E., Gillis, M., Swings, J. & Vandamme, P. Introduction to the Proteobacteria. In The Prokaryotes: A Handbook on the Biology of Bacteria (eds Dworkin, M. et al.) 3–37 (Springer, 2006).
Bell, T. H. et al. Predictable bacterial composition and hydrocarbon degradation in Arctic soils following diesel and nutrient disturbance. ISME J. 7, 1200–1210 (2013).
Google Scholar
Brzeszcz, J. & Kaszycki, P. Aerobic bacteria degrading both n-alkanes and aromatic hydrocarbons: An undervalued strategy for metabolic diversity and flexibility. Biodegradation 29, 359–407 (2018).
Google Scholar
Elumalai, P. et al. Role of thermophilic bacteria (Bacillus and, Geobacillus) on crude oil degradation and biocorrosion in oil reservoir environment. 3Biotech 9, 79 (2019).
Mitter, E. K., de Freitas, J. R. & Germida, J. J. Bacterial root microbiome of plants growing in oil sands reclamation covers. Front. Microbiol. https://doi.org/10.3389/fmicb.2017.00849 (2017).
Google Scholar
Bundy, J. G., Paton, G. I. & Campbell, C. D. Microbial communities in different soil types do not converge after diesel contamination. J. Appl. Microbiol. 92, 276–288 (2002).
Google Scholar
Korenblum, E., Souza, D. B., Penna, M. & Seldin, L. Molecular analysis of the bacterial communities in crude oil Samples from two Brazilian offshore petroleum platforms. Int. J. Microbiol. 2012, 1–8 (2012).
Google Scholar
Kim, T. J., Lee, E. Y., Kim, Y. J., Cho, K. S. & Ryu, H. W. Degradation of polyaromatic hydrocarbons by Burkholderia cepacia 2A–12. World J. Microbiol. Biotechnol. 19, 411–417 (2003).
Google Scholar
Revathy, T., Jayasri, M. A. & Suthindhiran, K. Biodegradation of PAHs by Burkholderia sp. VITRSB1 isolated from marine sediments. Scientifica (Cairo) 2015, 1–9 (2015).
Ramos, D. T., da Silva, M. L. B., Nossa, C. W., Alvarez, P. J. J. & Corseuil, H. X. Assessment of microbial communities associated with fermentative-methanogenic biodegradation of aromatic hydrocarbons in groundwater contaminated with a biodiesel blend (B20). Biodegradation 25, 681–691 (2014).
Google Scholar
Whyte, L. G. et al. Gene cloning and characterization of multiple alkane hydroxylase systems in Rhodococcus strains Q15 and NRRL B-16531. Appl. Environ. Microbiol. 68, 5933–5942 (2002).
Google Scholar
Lee, M., Kim, M. K., Singleton, I., Goodfellow, M. & Lee, S.-T. Enhanced biodegradation of diesel oil by a newly identified Rhodococcus baikonurensis EN3 in the presence of mycolic acid. J. Appl. Microbiol. 100, 325–333 (2006).
Google Scholar
Bateman, J. N., Speer, B., Feduik, L. & Hartline, R. A. Naphthalene association and uptake in Pseudomonas putida. J. Bacteriol. 166, 155–161 (1986).
Google Scholar
Rentz, J. A., Alvarez, P. J. J. & Schnoor, J. L. Repression of Pseudomonas putida phenanthrene-degrading activity by plant root extracts and exudates. Environ. Microbiol. 6, 574–583 (2004).
Google Scholar
Shukor, M. Y. et al. Isolation and characterization of Pseudomonas diesel-degrading strain from Antartica. J. Environ. Biol. 30, 1–6 (2009).
Google Scholar
Meyer, D. D. et al. Bioremediation strategies for diesel and biodiesel in oxisol from southern Brazil. Int. Biodeterior. Biodegrad. 95, 356–363 (2014).
Google Scholar
Taccari, M., Milanovic, V., Comitini, F., Casucci, C. & Ciani, M. Effects of biostimulation and bioaugmentation on diesel removal and bacterial community. Int. Biodeterior. Biodegrad. 66, 39–46 (2012).
Google Scholar
Fosso-Kankeu, E. et al. Adaptation behaviour of bacterial species and impact on the biodegradation of biodiesel-diesel. Braz. J. Chem. Eng. 34, 469–480 (2017).
Google Scholar
Lutz, G., Chavarría, M., Arias, M. L. & Mata-Segreda, J. F. Microbial degradation of palm (Elaeis guineensis) biodiesel. Rev. Biol. Trop. 54, 59–63 (2006).
Google Scholar
Holmes, A. J. et al. Diverse, yet-to-be-cultured members of the Rubrobacter subdivision of the Actinobacteria are widespread in Australian arid soils. FEMS Microbiol. Ecol. 33, 111–120 (2000).
Google Scholar
Wollherr, A. et al. Pyrosequencing-based assessment of bacterial community structure along different management types in German forest and grassland soils. PLoS ONE 6, 1–12 (2011).
Crampon, M., Bodilis, J. & Portet-Koltalo, F. Linking initial soil bacterial diversity and polycyclic aromatic hydrocarbons (PAHs) degradation potential. J. Hazard. Mater. 359, 500–509 (2018).
Google Scholar
Wang, L., Li, F., Zhan, Y. & Zhu, L. Shifts in microbial community structure during in situ surfactant-enhanced bioremediation of polycyclic aromatic hydrocarbon-contaminated soil. Environ. Sci. Pollut. Res. 23, 14451–14461 (2016).
Google Scholar
van Beilen, J. B., Kingma, J. & Witholt, B. Substrate specificity of the alkane hydroxylase system of Pseudomonas oleovorans GPo1. Enzyme Microb. Technol. 16, 904–911 (1994).
Google Scholar
Mukherjee, A. et al. Bioinformatic approaches including predictive metagenomic profiling reveal characteristics of bacterial response to petroleum hydrocarbon contamination in diverse environments. Sci. Rep. 7, 1108 (2017).
Google Scholar
Ono, K., Nozaki, M. & Hayaishi, O. Purification and some properties of protocatechuate 4,5-dioxygenase. Biochim. Biophys. Acta Enzymol. 220, 224–238 (1970).
Google Scholar
Fung, H. K. H. et al. Biochemical and biophysical characterisation of haloalkane dehalogenases DmrA and DmrB in Mycobacterium strain JS60 and their role in growth on haloalkanes. Mol. Microbiol. 97, 439–453 (2015).
Google Scholar
Kang, Y.-S. & Park, W. Protection against diesel oil toxicity by sodium chloride-induced exopolysaccharides in Acinetobacter sp. strain DR1. J. Biosci. Bioeng. 109, 118–123 (2010).
Google Scholar
Ramadass, K., Megharaj, M., Venkateswarlu, K. & Naidu, R. Ecotoxicity of measured concentrations of soil-applied diesel: Effects on earthworm survival, dehydrogenase, urease and nitrification activities. Appl. Soil Ecol. 119, 1–7 (2017).
Google Scholar
Moreno, R. & Rojo, F. Enzymes for aerobic degradation of alkanes in bacteria. In Aerobic Utilization of Hydrocarbons, Oils and Lipids (ed. Rojo, F.) 1–25 (Springer, 2017).
Mitter, E. K., de Freitas, J. R. & Germida, J. J. Hydrocarbon-degrading genes in root endophytic communities on oil sands reclamation covers. Int. J. Phytoremediat. 22, 703–712 (2020).
Google Scholar
Mitter, E. K., Kataoka, R., de Freitas, J. R. & Germida, J. J. Potential use of endophytic root bacteria and host plants to degrade hydrocarbons. Int. J. Phytoremediat. 21, 928–938 (2019).
Google Scholar
Rojo, F. Degradation of alkanes by bacteria: Minireview. Environ. Microbiol. 11, 2477–2490 (2009).
Google Scholar
Dincer, K. Lower emissions from biodiesel combustion. Energy Sources A Recov. Util. Environ. Eff. 30, 963–968 (2008).
Google Scholar
Miri, M., Bambai, B., Tabandeh, F., Sadeghizadeh, M. & Kamali, N. Production of a recombinant alkane hydroxylase (AlkB2) from Alcanivorax borkumensis. Biotechnol. Lett. 32, 497–502 (2010).
Google Scholar
Schomburg, D. & Stephan, D. Rubredoxin-NAD+ reductase. In Enzyme Handbook (eds Schomburg, D. & Stephan, D.) 917–920 (Springer, 1994).
Eggink, G., Engel, H., Vriend, G., Terpstra, P. & Witholt, B. Rubredoxin reductase of Pseudomonas oleovorans. J. Mol. Biol. 212, 135–142 (1990).
Google Scholar
Hagelueken, G. et al. Crystal structure of the electron transfer complex rubredoxin rubredoxin reductase of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. 104, 12276–12281 (2007).
Google Scholar
Lyu, Y., Zheng, W., Zheng, T. & Tian, Y. Biodegradation of polycyclic aromatic hydrocarbons by Novosphingobium pentaromativorans US6-1. PLoS ONE 9, e101438 (2014).
Google Scholar
Wang, J. et al. Comparative genomics of degradative Novosphingobium strains with special reference to microcystin-degrading Novosphingobium sp. THN1. Front. Microbiol. 9, 1–17 (2018).
Google Scholar
Dhillon, G. S., Amichev, B. Y., de Freitas, J. R. & van Rees, K. Accurate and precise measurement of organic carbon content in carbonate-rich soils. Commun. Soil Sci. Plant Anal. 3624, 2707–2720 (2015).
Google Scholar
McKeague, J. A. Manual on SOIL sampling and Methods of Analysis (Canadian Society of Soil Science, 1978).
Laverty, D. H. & Bollo-Kamara, A. Recommended Methods of Soil Analysis for Canadian Prairie Agricultural Soils (Alberta Agriculture, 1988).
Qian, P., Schoenaru, J. J. & Karamanos, R. E. Simultaneous extraction of available phosphorus and potassium with a new soil test: A modification of Kelowna extraction. Commun. Soil Sci. Plant Anal. 25, 627–635 (1994).
Google Scholar
Anderson, J. P. E. & Domsch, K. H. A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biol. Biochem. 10, 215–221 (1978).
Google Scholar
de Freitas, J. R., Schoenau, J. J., Boyetchko, S. M. & Cyrenne, S. A. Soil microbial populations, community composition, and activity as affected by repeated applications of hog and cattle manure in eastern Saskatchewan. Can. J. Microbiol. 49, 538–548 (2003).
Google Scholar
Ramirez, K. S., Craine, J. M. & Fierer, N. Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes. Glob. Change Biol. 18, 1918–1927 (2012).
Google Scholar
Craine, J. M., Fierer, N. & McLauchlan, K. K. Widespread coupling between the rate and temperature sensitivity of organic matter decay. Nat. Geosci. 3, 854–857 (2010).
Google Scholar
Helgason, B. L., Walley, F. L. & Germida, J. J. Long-term no-till management affects microbial biomass but not community composition in Canadian prairie agroecosytems. Soil Biol. Biochem. 42, 2192–2202 (2010).
Google Scholar
Drenovsky, R. E., Elliott, G. N., Graham, K. J. & Scow, K. M. Comparison of phospholipid fatty acid (PLFA) and total soil fatty acid methyl esters (TSFAME) for characterizing soil microbial communities. Soil Biol. Biochem. 36, 1793–1800 (2004).
Google Scholar
Macdonald, L. M., Paterson, E., Dawson, L. A. & McDonald, A. J. S. Short-term effects of defoliation on the soil microbial community associated with two contrasting Lolium perenne cultivars. Soil Biol. Biochem. 36, 489–498 (2004).
Google Scholar
Zelles, L., Bai, Q. Y., Beck, T. & Beese, F. Signature fatty acids in phospholipids and lipopolysaccharides as indicators of microbial biomass and community structure in agricultural soils. Soil Biol. Biochem. 24, 317–323 (1992).
Google Scholar
Hynes, H. M. & Germida, J. J. Relationship between ammonia oxidizing bacteria and bioavailable nitrogen in harvested forest soils of central Alberta. Soil Biol. Biochem. 46, 18–25 (2012).
Google Scholar
McCune, B. & Mefford, M. J. Multivariate analysis of Ecological Data (2011).
Helgason, B. L., Walley, F. L. & Germida, J. J. No-till soil management increases microbial biomass and alters community profiles in soil aggregates. Appl. Soil Ecol. 46, 390–397 (2010).
Google Scholar
McCune, B. & Grace, J. B. Analysis of Ecological Communities (2002).
Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).
Google Scholar
Boylen, E. et al. QIIME 2: Reproducible, interactive, scalable, and extensible microbiome data science. PeerJ Prepr. https://doi.org/10.7287/peerj.preprints.27295 (2018).
Google Scholar
Caporaso, J. G. et al. Moving pictures of the human microbiome. Genome Biol. 12, 1–8 (2011).
Google Scholar
Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).
Google Scholar
Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral. Ecol. 26, 32–46 (2001).
Oksanen, J. et al. Community Ecology Package ‘vegan’ (2020).
Hamilton, N. ggtern: An Extension to ‘ggplot2’, for the Creation of Ternary Diagrams (2018).
Douglas, G. M. et al. PICRUSt2 for prediction of metagenome functions. Nat. Biotechnol. 38, 685–688 (2020).
Google Scholar
Langille, M. G. I. et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31, 814–821 (2013).
Google Scholar
Kanehisa, M., Sato, Y., Furumichi, M., Morishima, K. & Tanabe, M. New approach for understanding genome variations in KEGG. Nucleic Acids Res. 47, D590–D595 (2019).
Google Scholar
Parks, D. H. & Beiko, R. G. Identifying biologically relevant differences between metagenomic communities. Bioinformatics 26, 715–721 (2010).
Google Scholar
Source: Ecology - nature.com