in

Impact of elevation and slope aspect on floristic composition in wadi Elkor, Sarawat Mountain, Saudi Arabia

  • 1.

    Cunningham, S. C. et al. Balancing the environmental benefits of reforestation in agricultural regions. Perspect. Plant Ecol. Evol. Syst. 17, 301–317. https://doi.org/10.1016/j.ppees.2015.06.001 (2015).

    Article 

    Google Scholar 

  • 2.

    Pearse, I. S. & Hipp, A. L. Phylogenetic and trait similarity to a native speciespredict herbivory on non-native oaks. Proc. Natl. Acad. Sci. U. S. A. 106, 18097–18102 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 3.

    Abdel Khalik, K., El-Sheikh, M. & El-Aidarous, A. Floristic diversity and vegetation analysisof wadi Al Noman, Holy Mecca, Saudi Arabia. Turk. J. Bot. 37, 894–907. https://doi.org/10.3906/bot-1209-56 (2013).

    Article 

    Google Scholar 

  • 4.

    Al-Sherif, E. A., Ayesh, A. M. & Rawi, S. M. Floristic composition, life form and chorology of plant life at Khulais region western Saudi Arabia. Pak. J. Bot. 45, 29–38 (2013).

    Google Scholar 

  • 5.

    Al-Sherif, E. A. & Fadl, M. A. Floristic study of the Al-Shafa Highlands in Taif, western Saudi Arabia. Flora 225, 20–29. https://doi.org/10.1016/j.flora.2016.09.004 (2016).

    Article 

    Google Scholar 

  • 6.

    Al-Nafie, A. H. Phytogeography of Saudi Arabia. Saudi J. Biol. Sci. 15, 159–176 (2008).

    Google Scholar 

  • 7.

    Mossa, J. S., Al-Yahya, M. A. & Al-Meshal, I. A. Medicinal Plants of Saudi Arabia (King Saud University Press, 1987).

    Google Scholar 

  • 8.

    Körner, C. Why are there global gradients in species richness? Mountains might hold the answer. Trends Ecol. Evol. 15, 513–514. https://doi.org/10.1016/S01695347(00)02004-8 (2000).

    Article 

    Google Scholar 

  • 9.

    Cano-Ortiz, A., Musarella, C. M., PiNar Fuentes, J. C., Gomes, C. J. P. & Cano, E. Distribution patterns of endemic flora to define hotspots on Hispaniola. Syst. Biodiv. 14, 261–275. https://doi.org/10.1080/14772000.2015.1135195 (2016).

    Article 

    Google Scholar 

  • 10.

    Hedberg, O. The flora of Ethiopia: a progress report. in Research in Ethiopia Flora (ed. Hedberg, I.). Symb. Bot. Ups. 26, 17–18 (1986).

  • 11.

    Cowling, R. M., Esler, K. J., Midgley, G. F. & Honing, M. A. Plant functional diversity, species diversity and climate in arid and semi-arid southern Africa. J. Arid Environ. 27, 141–158. https://doi.org/10.1006/jare.1994.1054 (1994).

    ADS 
    Article 

    Google Scholar 

  • 12.

    Montana, C. & Valientebanuet, A. Floristic and life-form diversity along an altitudinal gradient in an intertropical semiarid Mexican region. Southwest. Nat. 43, 25–39 (1998).

    Google Scholar 

  • 13.

    Pavón, N. P., Hernández-Trejo, H. & Rico-Gray, V. Distribution of plant lifeforms along an altitudinal gradient in the semi-arid valley of Zapotitlón, Mexico. J. Veg. Sci. 11, 39–42. https://doi.org/10.2307/3236773 (2000).

    Article 

    Google Scholar 

  • 14.

    Raunkiaer, C. Statistik der Lebensformen als Grundlage für die biologische Pflanzengeographie. Beih. Bot. Centralbl. 27, 171–206 (1910).

    Google Scholar 

  • 15.

    Sarmiento, G. & Monasterio, M. Life form and phenology. In Tropical Savannas (ed. Bourlièrre, F.) 79–108 (Elsevier, 1983).

    Google Scholar 

  • 16.

    Meher-Homji, V. M. Environmental implications of life-form spectra from India. J. Econ. Tax. Bot. 2, 23–30 (1981).

    Google Scholar 

  • 17.

    Campbell, B. M. & Werger, M. J. A. Plant form in mountains of the Cape, South Africa. J. Ecol. 76, 637–653 (1988).

    Article 

    Google Scholar 

  • 18.

    Komárková, V. & McKendrick, J.D. Patterns in vascular plant growth forms in arctic communities and environment at Atkasook, Alaska. in Plant Form and Vegetation Structure (eds. Werger, M. J. A., van der Aart, P. J. M., During, H. J. & Verhoeven, J. T. A.) 45–70 (SPB Academic Publishing BV, 1988).

    Google Scholar 

  • 19.

    Cody, M. L. Growth-form diversity and community structure in desert plants. J. Arid Environ. 17, 199–209 (1989).

    ADS 
    Article 

    Google Scholar 

  • 20.

    Danin, A. & Orshan, G. The distribution of Raunkiaer life forms in Israel in relation to the environment. J. Veg. Sci. 1, 41–48 (1990).

    Article 

    Google Scholar 

  • 21.

    Osman, A. K., Al-Ghamdi, F. & Bawadekji, A. Floristic diversity and vegetation analysis of Wadi Arar: a typical desert Wadi of the Northern Border region of Saudi Arabia. Saud. J. Biol. Sci. 21, 554–565. https://doi.org/10.1016/j.sjbs.2014.02.001 (2014).

    Article 

    Google Scholar 

  • 22.

    Grime, J. P. Plant Strategies and Vegetation Processes (John Wiley, 1979).

    Google Scholar 

  • 23.

    Palmer, M. W. The coexistence of species in fractal landscapes. Am. Nat. 139, 375–397 (1992).

    Article 

    Google Scholar 

  • 24.

    Huston, M. & DeAngelis, D. L. Competition and coexistence: the effects of resource transport and supply rates. Am. Nat. 144, 954–977. https://doi.org/10.1086/285720 (1994).

    Article 

    Google Scholar 

  • 25.

    Szaro, R. C. Riparian forest and scrubland communities of Arizona and New Mexico. Desert Plants 9, 69–138 (1989).

    Google Scholar 

  • 26.

    DeBano, L. F. & Schimdt, L. J. Potential for enhancing riparian habitat in the Southwestern United States with watershed practices. For. Ecol. Manag. 33(34), 385–403. https://doi.org/10.1016/0378-1127(90)90205-P (1990).

    Article 

    Google Scholar 

  • 27.

    Lieberman, D., Lieberman, M., Peralta, R. & Hartshorn, G. S. Tropical forest structure and composition on a large-scale altitudinal gradient in Costa Rica. J. Ecol. 84, 137–152. https://doi.org/10.2307/2261350 (1996).

    Article 

    Google Scholar 

  • 28.

    Zimmerman, J. C., DeWald, L. E. & Rowlands, P. G. Vegetation diversity in an interconnected ephemeral riparian system of north-central Arizona, USA. Biol. Conserv. 90, 217–228. https://doi.org/10.1016/S0006-3207(99)00035-X (1999).

    Article 

    Google Scholar 

  • 29.

    Brown, J. Mammals on mountainsides: elevational patterns of diversity. Glob. Ecol. Biogeogr. 10, 101–109. https://doi.org/10.1046/j.1466-822x.2001.00228.x (2001).

    Article 

    Google Scholar 

  • 30.

    Lomolino, M. V. Elevation gradients of species-density: historical and prospective views. Glob. Ecol. Biogeogr. 10, 3–13. https://doi.org/10.1046/j.1466822x.2001.00229.x (2001).

    Article 

    Google Scholar 

  • 31.

    Ahmed, M. J., Murtaza, G., Shaheen, H. & Habib, T. Distribution pattern and associated flora of Jurinea dolomiaea in the western Himalayan highlands of Kashmir: an indicator endemic plant of alpine phytodiversity. Ecol. Ind. 116, 106461. https://doi.org/10.1016/j.ecolind.2020.106461 (2020).

    Article 

    Google Scholar 

  • 32.

    Bhat, J. A. et al. Influence of altitude on the distribution pattern of flora in a protected area of Western Himalaya. Acta Ecol. Sin. 40, 30–43. https://doi.org/10.1016/j.chnaes.2018.10.006 (2020).

    Article 

    Google Scholar 

  • 33.

    Kutiel, P. & Lavee, H. Effect of slope aspect on soil and vegetation properties along an aridity transect. Isr. J. Plant Sci. 47, 169–178. https://doi.org/10.1080/07929978.1999.10676770 (1999).

    Article 

    Google Scholar 

  • 34.

    Cantlon, J. Vegetation and microclimates of north and south slopes of Cushetunk mountain. New Jersey. Ecol. Monogr. 23, 241–270 (1953).

    Article 

    Google Scholar 

  • 35.

    Vetaas, O. R. Gradients in field-layer vegetation on an arid misty mountain plateau in the Sudan. J. Veg. Sci. 3, 527–534 (1992).

    Article 

    Google Scholar 

  • 36.

    Kirkpatrick, J., Fensham, R., Nunez, M. & Bowman, D. Vegetation-radiation relation in the wet-dry tropics: granite hills in northern Australia. Vegetatio 76, 103–112 (1998).

    Google Scholar 

  • 37.

    Ady, J. The Taif escarpment, Saudi Arabia: a study for nature conservation and recreational development. Mt. Res. Dev. 15, 101–120 (1995).

    Article 

    Google Scholar 

  • 38.

    Almazroui, M., Nazrul Islam, M., Athar, H., Jones, P. D. & Rahman, M. A. Recent climate change in the Arabian Peninsula: annual rainfall and temperature analysis of Saudi Arabia for 1978–2009. Int. J. Climatol. https://doi.org/10.1002/joc.3446 (2012).

    Article 

    Google Scholar 

  • 39.

    Migahid, A. M. Flora of Saudi Arabia 4th edn. (King Saud University Press, 1996).

    Google Scholar 

  • 40.

    Collenette, S. Wild Flowers of Saudi Arabia (National Commission for Wildlife Conservation and Development, 1999).

    Google Scholar 

  • 41.

    Chaudhary, S. Flora of the Kingdom of Saudi Arabia (Ministry of Agriculture and Water, 2001).

    Google Scholar 

  • 42.

    Raunkiaer, C. Life Forms of Plants and Statistical Plant Geography (Collected Paper Translated into English) (University Press, 1934).

    Google Scholar 

  • 43.

    Wickens, G. E. The Flora of Jebel Morra (Sudan Republic) and Its Geographical Affinities. Kew Bulletin Additional Series V (HMSO, London, 1976).

    Google Scholar 

  • 44.

    Zohary, M. Geobotanical Foundations of the Middle East Vol. 2 (GustavFischer Verlag, 1973).

    Google Scholar 

  • 45.

    Broadbent, F. E. Organic matter. In Methods of Soil Analysis Part 1 (ed. Black, C. A.) 1397–1400 (American Society of Agronomy, Inc, 1965).

    Google Scholar 

  • 46.

    Bremmer, J. M. Total nitrogen. In Methods of Soil Analysis Part 1 (ed. Black, C. A.) 1149–1176 (American Society of Agronomy, Inc, 1965).

    Google Scholar 

  • 47.

    Ward, J. H. Hierarchical grouping to optimize an objective function. Am. Stat. Assoc. J. 58, 236–244 (1963).

    MathSciNet 
    Article 

    Google Scholar 

  • 48.

    Castro, S. A. & Jaksic, F. M. Patterns of turnover and floristic similarity show a non random distribution of naturalized flora in Chile. South America. Rev. Hist. Nat. 81, 111–121 (2008).

    Google Scholar 

  • 49.

    Magurran, A. E. Ecological Diversity and Its Measurements (Princeton University Press, 1988).

    Book 

    Google Scholar 

  • 50.

    Pielou, E. C. Ecological Diversity 1st edn. (Wiely Interscience, 1975).

    Google Scholar 

  • 51.

    Hosni, H. A. & Hegazy, A. K. Contribution to the flora of Asir, Saudi Arabia. Candollea 51, 169–202 (1996).

    Google Scholar 

  • 52.

    Al-Turki, T. A. & Al-Olayan, H. A. Contribution to the flora of Saudi Arabia: hail region. Saud. J. Biol. Sci. 10, 190–222 (2003).

    Google Scholar 

  • 53.

    Abd El-Ghani, M. M. & Abdel-Khalik, K. N. Floristic diversity and phytogeography of the gebel Elba national park South-East Egypt. Turk. J. Bot. 30, 121–136 (2006).

    Google Scholar 

  • 54.

    Panthi, M. P., Chaudhary, R. P. & Vetaas, O. R. Plant species richness and composition in a trans Himalayan inner valley of mananging district, Central Nepal. Himal. J. Sci. 4, 57–64. https://doi.org/10.3126/hjs.v4i6.983 (2007).

    Article 

    Google Scholar 

  • 55.

    Burke, A. Properties of soil pockets on arid Nama karoo inselbergsethe effect of geology and derived landforms. J. Arid Environ. 50, 219–234. https://doi.org/10.1006/jare.2001.0907 (2002).

    ADS 
    Article 

    Google Scholar 

  • 56.

    Måren, I. E., Karki, S., Prajapati, C., Yadav, R. K. & Shrestha, B. B. Facing north or south: does slope aspect impact forest standcharacteristics and soil properties in a semiarid trans-Himalayanvalley?. J. Arid Environ. 121, 112–123. https://doi.org/10.1016/j.jaridenv.2015.06.004 (2015).

    ADS 
    Article 

    Google Scholar 

  • 57.

    Boyko, H. On the role of plants as quantitative climate indicators and the geoecological law of distributions. J. Ecol. 25, 138–157 (1947).

    Article 

    Google Scholar 

  • 58.

    Andersen, G. L. & Krzywinski, K. Longevity and growth of Acacia tortilis; insights from 14C content and anatomy of wood. BMC Ecol. 7, 4. https://doi.org/10.1186/1472-6785-7-4 (2007).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 59.

    Tiwari, N., Srivastava, N. & Sharma, V. Comparative analysis of total phenolic content and antioxidant activity of in vivo and in vitro grown plant parts of Carica papaya L. Ind. J. Plant Physiol. 19, 356–362 (2014).

    Article 

    Google Scholar 

  • 60.

    Daur, I. Plant flora in the rangeland of Western Saudi Arabia. Pak. J. Bot. 44, 23–26 (2012).

    Google Scholar 

  • 61.

    El-Demerdash, M. A., Hegazy, A. K. & Zilay, A. M. Distribution of plant communities in Tihamah coastal plains of Jazan region, Saudi Arabia. Vegetatio 112, 141–151 (1994).

    Article 

    Google Scholar 

  • 62.

    El-Ghanim, W. M., Hassan, L. M., Galal, T. M. & Badr, A. Floristic composition and vegetation analysis in Hail region north of Central Saudi Arabia. Saudi J. Biol. Sci. 17, 119–128. https://doi.org/10.1016/j.sjbs.2010.02.004 (2010).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 63.

    Abd El-Ghani, M. M. Environmental correlates of species distribution in arid desert ecosystems of eastern Egypt. J. Arid Environ. 38, 297–313 (1998).

    ADS 
    Article 

    Google Scholar 

  • 64.

    Sharma, M. & Rajpal, K. Life-forms and biological spectrum of the flora of the Punjab state, India. Bull. Bot. Surv. India 33, 276–280. https://doi.org/10.1078/1439-1791-00163 (1991).

    Article 

    Google Scholar 

  • 65.

    Hegazy, A. K., El-Demerdash, M. A. & Hosni, H. A. Vegetation, species diversity and floristic relations along an altitudinal gradient in South-West Saudi Arabia. J. Arid Environ. 38, 3–13. https://doi.org/10.1006/jare.1997.0311 (1998).

    ADS 
    Article 

    Google Scholar 

  • 66.

    Kassas, M. & Girgis, W. A. Habitats and plant communities in the Egyptian deserts. V. The limestone plateau. J. Ecol. 52, 107–119 (1964).

    Article 

    Google Scholar 

  • 67.

    Orshan, G. The desert of the middle east. In Ecosystems of the World, 12B, Hot Desert and Arid Shrublands (eds Evenari, M. et al.) 1–28 (Elsevier, 1986).

    Google Scholar 

  • 68.

    Shaltout, K. H., Sheded, M. G. & Salem, A. M. Vegetation spatial heterogeneity in a hyper arid biosphere reserve area in North Africa. Act. Bot. Croat. 69, 31–46 (2010).

    Google Scholar 

  • 69.

    Stewart, L. et al. The regional species richness and genetic diversity of Arctic vegetation reflect both past glaciations and current climate. Ecol. Biogeogr. 25, 430–442. https://doi.org/10.1111/geb.12424 (2016).

    Article 

    Google Scholar 

  • 70.

    Cain, S. A. & Castro, M. O. Manual of Vegetation Analysis (Harper Brothers, 1959).

    Google Scholar 

  • 71.

    Dickoré, W. B. & Nüsser, M. Flora of Nanga Parbat (NW Himalaya, Pakistan): an annotated inventory of vascular plants with remarks on vegetation dynamics. Englera 19, 1–253. https://doi.org/10.2307/3776769 (2000).

    Article 

    Google Scholar 

  • 72.

    Hoffmann, A. J. & Hoffmann, A. E. Altitudinal ranges of phanerophytes and chamaephytes in central Chile. Vegetatio 48, 151–163. https://doi.org/10.1007/BF00726885 (1982).

    Article 

    Google Scholar 

  • 73.

    White, F. & Leonard, J. Phytogeographical links between Africa and Southwest Asia. Flora Veg. Mundi. 9, 229–246. https://doi.org/10.1007/BF01117080 (1991).

    Article 

    Google Scholar 

  • 74.

    König, P. Phytogeography of South-Western Saudi Arabia (Asir, Tihama). Erde 119, 75–89 (1988).

    Google Scholar 

  • 75.

    White, F. The vegetation of Africa: A descriptive memoir to accompany the UNSECO, AETFAT, UNSO vegetation map of Africa (United Nations Educational, Scientific and Cultural Organization, Paris, 1983).

    Google Scholar 


  • Source: Ecology - nature.com

    Gene drives gaining speed

    Principles of seed banks and the emergence of complexity from dormancy