Hamdan, A. et al. A preliminary study of mirror-induced self-directed behaviour on wildlife at the Royal Belum Rainforest Malaysia. Sci. Rep. 10, 14105. https://doi.org/10.1038/s41598-020-71047-1 (2020).
Google Scholar
Lazarus, B. A. et al. Topographical differences impacting wildlife dynamics at natural salt licks in the Royal Belum Rainforest. Asian J. Conserv. Biol. 8(2), 97–101 (2019).
Brightsmith, D. J., Taylor, J. & Phillips, T. D. The roles of soil characteristics and toxin adsorption in avian geophagy. Biotropica 40, 766–774 (2008).
Google Scholar
Ayotte, J. B., Parker, K. L., Arocena, J. & Gillingham, M. P. Chemical composition of lick soils: functions of soil ingestion by four ungulate species. J. Mammal. 87(5), 878–888 (2006).
Google Scholar
Matsubayashi, H. et al. Importance of natural licks for mammals in Bornean Inland Tropical Rainforest. Ecol. Res. 22, 742 (2006).
Google Scholar
Tracy, B. F. & McNaughton, S. J. Elemental analysis of mineral licks from the Serengeti National Park, the Konza Prairie and Yellowstone National Park. Ecography 18, 91–94 (1995).
Google Scholar
Razali, N. B. et al. Physical factors at salt licks influenced the frequency of wildlife visitation in the Malaysian tropical rainforest. Trop. Zool. 33(3), 83–96. https://doi.org/10.4081/tz.2020.69 (2020).
Google Scholar
Owen-Smith, N. & Mills, M. Predator-prey size relationships in an African large-mammal food web. J. Anim. Ecol. 77, 173–183 (2008).
Google Scholar
Mathers, K. L., Rice, S. P. & Wood, P. J. Predator, prey, and substrate interactions: the role of faunal activity and substrate characteristics. Ecosphere 10(1), e02545 (2019).
Google Scholar
Sobral, M. et al. Mammal diversity influences the carbon cycle through trophic interactions in the Amazon. Nat. Ecol. Evol. 1, 1670–1676 (2017).
Google Scholar
Stevens, A. Dynamics of predation. Nat. Educ. Knowl. 3(10), 46 (2010).
Lima, S. T. Putting predators back into behavioral predator–prey interactions. Trends Ecol. Evol. 17(2), 70–75 (2002).
Google Scholar
Cuyper, A. D. et al. Predator size and prey size–gut capacity ratios determine kill frequency and carcass production in terrestrial carnivorous mammals. Oikos https://doi.org/10.1111/oik.05488 (2018).
Google Scholar
Terborgh, J. et al. Ecological meltdown in predator-free forest fragments. Science 294(5548), 1923–1926 (2001).
Google Scholar
Couturier, S. & Barrete, C. The behaviour of moose at natural mineral springs in Quebec. Can. J. Zool. 66, 522–528 (1987).
Google Scholar
Ruggiero, R. D. & Fay, J. M. Utilization of termitarium soils by elephants and its ecological implications. Afr. J. Ecol. 32, 222–232 (1994).
Google Scholar
Shahfiz, M. A. et al. Checklist of vertebrates at Primary Linkages 2 (PL2) of the central forest spine ecological corridor in Belum Temengor Forest Reserves, Perak, Peninsular Malaysia. Malays. For. 82(2), 463–485 (2019).
Liyana, N. M., Othman, Z., Wahid, A. R. & Hakimie, A. A. Habitat suitability prediction model of wildlife at Royal Belum State Park using geographical information system. Int. J. Geoinform. 12(2), 1–8 (2016).
Kawanishi, K. et al. The Malayan tiger. In In Noyes Series in Animal Behavior, Ecology, Conservation and Management, Tigers of the World 2nd edn (eds Tilson, R. & Nyhus, P. J.) 367–376 (William Andrew Publishing, Norwich, 2010).
Lynam, A. J., Laidlaw, R., Wan Noordin, W. S., Elagupillay, S. & Bennett, E. L. Assessing the conservation status of the tiger Panthera tigris at priority sites in Peninsular Malaysia. Oryx 41(4), 454–462. https://doi.org/10.1017/S0030605307001019 (2007).
Google Scholar
Kawanishi, K., Rayan, M. D., Gumal, M. T. & Shepherd, C. R. Extinction process of the sambar in Peninsular Malaysia. Deer Spec. Group Newsl. N. 26, 48–59 (2014).
Simcharoen, A. et al. Female tiger Panthera tigris home range size and prey abundance: important metrics for management. Oryx 48(3), 370–377. https://doi.org/10.1017/S0030605312001408 (2014).
Google Scholar
Kedri, K. et al. Distribution and ecology of Rafflesia in Royal Belum state park, Perak, Malaysia. Int. J. Eng. Technol. 7(229), 292–296 (2018).
Google Scholar
Misni, A., Rauf, A., Rasam, A. & Buyadi, A. S. N. Spatial analysis of habitat conservation for hornbills: a case study of Royal Belum-Temengor forest complex in Perak Sate Park Malaysia. Pertanika J. Soc. Sci. Hum. 25(S), 11–20 (2017).
Rovero, F., Zimmermann, F., Berzi, D. & Meek, P. Which camera trap type and how many do I need? A review of camera features and study designs for a range of wildlife research applications. Hystrix 2, 6318 (2013).
Liu, N., Zhao, Q., Zhang, N., Cheng, X., & Zhu, J. Pose-guided complementary features learning for Amur tiger re-identification, in 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), Seoul, Korea (South), 286–293. https://doi.org/10.1109/ICCVW.2019.00038 (2019).
Sharma, S., Jhala, Y. & Sawarkar, V. B. Identification of individual tigers (Panthera tigris) from their pugmarks. J. Zool. 267, 9–18 (2005).
Google Scholar
Cho, Y. et al. The tiger genome and comparative analysis with lion and snow leopard genomes. Nat. Commun. 4, 2433 (2013).
Google Scholar
Kerley, L. L. Using dogs for tiger conservation and research. Integr. Zool. 5, 390–396 (2010).
Google Scholar
Li, S., Li, J., Tang, H., Qian, R., & Lin, W. ATRW: a benchmark for Amur tiger re-identification in the wild, in Proceedings of the 28th ACM International Conference on Multimedia (MM ’20), October 12–16, 2020, Seattle, WA, USA. https://doi.org/10.1145/3394171.3413569 (ACM, New York, NY, USA, 2020).
Shi, C. et al. Amur tiger stripes: Individual identification based on deep convolutional neural network. Integr. Zool. 15(6), 461–470 (2020).
Google Scholar
McCullough, D. R., Pei, K. C. J. & Wang, Y. Home range, activity patterns, and habitat relations of Reeves’ muntjacs in Taiwan. J. Wildl. Manag. 64(2), 430. https://doi.org/10.2307/3803241 (2000).
Google Scholar
Chatterjee, D., Sankar, K., Qureshi, Q., Malik, P. K. & Nigam, P. Ranging pattern and habitat use of sambar (Rusa unicolor) in Sariska Tiger Reserve, Rajasthan, western India. DSG Newsl. 26, 60–71 (2014).
Garza, S. J., Tabak, M. A., Miller, R. S., Farnsworth, M. L. & Burdett, C. L. Abiotic and biotic influences on home-range size of wild pigs (Sus scrofa). J. Mammal. 99(1), 97–107. https://doi.org/10.1093/jmammal/gyx154 (2018).
Google Scholar
Sankar, K. et al. Home range, habitat use and food habits of re-introduced gaur (Bos gaurus gaurus) in Bandhavgarh Tiger Reserve, Central India. Trop. Conserv. Sci. 6(1), 50–69 (2013).
Google Scholar
Simcharoen, A. et al. Ecological Factors that influence sambar (Rusa unicolor) distribution and abundance in western Thailand: Implications for tiger conservation. Raffles Bull. Zool. 62, 100–106 (2014).
Mark Rayan, D. & Linkie, M. Managing threatened ungulates in logged-primary forest mosaics in Malaysia. PLoS ONE 15(12), e0243932. https://doi.org/10.1371/journal.pone.0243932 (2020).
Google Scholar
McClure, M. L. et al. Modeling and mapping the probability of occurrence of invasive wild pigs across the contiguous United States. PLoS ONE 10(8), e0133771. https://doi.org/10.1371/journal.pone.0133771 (2015).
Google Scholar
Ickes, K. Hyper-abundance of native wild pigs (Sus scrofa) in a lowland dipterocarp rain forest of Peninsular Malaysia. Biotropica 33(4), 682–690 (2001).
Google Scholar
Saunders, G. & McLeod, S. Predicting home range size from the body mass or population densities of feral pigs, sus scrofa (Artiodactyla: Suidae). Aust. J. Ecol. 24, 538–543 (1999).
Google Scholar
Abrams, P. A. & Matsuda, H. Prey adaptation as a cause of predator-prey cycles. Evolution 51, 1742–1750 (1997).
Google Scholar
Zhang, C., Minghai, Z. & Philip, S. Does prey density limit Amur tiger (Panthera tigris altaica) recovery in north-eastern China. Wildl. Biol. 19(4), 452–461 (2013).
Google Scholar
Majumder, A. et al. Home ranges of Bengal tiger (Panthera tigris tigris L.) in Pench Tiger Reserve, Madhya Pradesh, Central India. Wildl. Biol. Pract. 8, 36–49 (2012).
Source: Ecology - nature.com