van der Plas, F. Biodiversity and ecosystem functioning in naturally assembled communities. Biol. Rev. 94, 1220–1245 (2019).
Google Scholar
Isbell, F. et al. Quantifying effects of biodiversity on ecosystem functioning across times and places. Ecol. Lett. 21, 763–778 (2018).
Google Scholar
Naeem, S., Thompson, L. J., Lawler, S. P., Lawton, J. H. & Woodfin, R. M. Declining biodiversity can alter the performance of ecosystems. Nature 368, 734–737 (1994).
Google Scholar
Cardinale, B. J. Impacts of biodiversity loss. Science 336, 552–553 (2012).
Google Scholar
Caliman, A., Pires, A. F., Esteves, F. A., Bozelli, R. L. & Farjalla, V. F. The prominence of and biases in biodiversity and ecosystem functioning research. Biodivers. Conserv 19, 651–664 (2010).
Google Scholar
Cardinale, B. J. et al. The functional role of producer diversity in ecosystems. Am. J. Bot. 98, 572–592 (2011).
Google Scholar
Porre R. J., van der Werf W., De Deyn G. B., Stomph T. J. & Hoffland E. Is litter decomposition enhanced in species mixtures? A meta-analysis. Soil Biol. Biochem. 145, 107791 (2020).
Kou, L. et al. Diversity-decomposition relationships in forests worldwide. eLife 9, e55813 (2020).
Google Scholar
Srivastava, D. et al. Diversity has stronger top-down than bottom-up effects on decomposition. Ecology 90, 1073–1083 (2009).
Google Scholar
Gessner, M. O. et al. Diversity meets decomposition. Trends Ecol. Evol. 25, 372–380 (2010).
Google Scholar
Cebrian, J. Patterns in the fate of production in plant communities. Am. Nat. 154, 449–468 (1999).
Google Scholar
Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R. & Cushing, C. E. The river continuum concept. Can. J. Fish. Aquat. Sci. 37, 130–137 (1980).
Google Scholar
Raymond, P. A. et al. Global carbon dioxide emissions from inland waters. Nature 503, 355–359 (2013).
Google Scholar
Hotchkiss, E. R. et al. Sources of and processes controlling CO2 emissions change with the size of streams and rivers. Nat. Geosci. 8, 696–699 (2015).
Google Scholar
Yao, Y. et al. Increased global nitrous oxide emissions from streams and rivers in the Anthropocene. Nat. Clim. Change 10, 138–142 (2019).
Google Scholar
Gessner, M. O., Chauvet, E. & Dobson, M. A perspective on leaf litter breakdown in streams. Oikos 85, 377–384 (1999).
Google Scholar
Marks, J. C. Revisiting the fates of dead leaves that fall into streams. Annu. Rev. Ecol. Evol. Syst. 50, 547–568 (2019).
Google Scholar
Tonin, A. M. et al. Interactions between large and small detritivores influence how biodiversity impacts litter decomposition. J. Anim. Ecol. 87, 1465–1474 (2018).
Google Scholar
Jonsson, M. & Malmqvist, B. Mechanisms behind positive diversity effects on ecosystem functioning: testing the facilitation and interference hypotheses. Oecologia 134, 554–559 (2003).
Google Scholar
Bastian, M., Pearson, R. G. & Boyero, L. Effects of diversity loss on ecosystem function across trophic levels and ecosystems: a test in a detritus-based tropical food web. Austral. Ecol. 33, 301–306 (2008).
Google Scholar
McKie, B. G., Schindler, M., Gessner, M. O. & Malmqvist, B. Placing biodiversity and ecosystem functioning in context: environmental perturbations and the effects of species richness in a stream field experiment. Oecologia 160, 757–770 (2009).
Google Scholar
McKie, B. G. et al. Ecosystem functioning in stream assemblages from different regions: contrasting responses to variation in detritivore richness, evenness and density. J. Anim. Ecol. 77, 495–504 (2008).
Google Scholar
Tylianakis, J. M. Resource heterogeneity moderates the biodiversity-function relationship in real world ecosystems. PLoS Biol. 6, e122 (2008).
Google Scholar
Boyero, L. et al. A global experiment suggests climate warming will not accelerate litter decomposition in streams but may reduce carbon sequestration. Ecol. Lett. 14, 289–294 (2011).
Google Scholar
Boyero, L. et al. Global patterns of stream detritivore distribution: implications for biodiversity loss in changing climates. Glob. Ecol. Biogeogr. 21, 134–141 (2012).
Google Scholar
Boyero, L. et al. Global distribution of a key trophic guild contrasts with common latitudinal diversity patterns. Ecology 92, 1839–1848 (2011).
Google Scholar
Handa, I. T. et al. Consequences of biodiversity loss for litter decomposition across biomes. Nature 509, 218–221 (2014).
Google Scholar
Borer, E. T. et al. Finding generality in ecology: a model for globally distributed experiments. Methods Ecol. Evol. 5, 65–73 (2014).
Google Scholar
Fraser, L. H. et al. Coordinated distributed experiments: an emerging tool for testing global hypotheses in ecology and environmental science. Front. Ecol. Environ. 11, 147–155 (2013).
Google Scholar
Woodward, G. et al. Continental-scale effects of nutrient pollution on stream ecosystem functioning. Science 336, 1438–1440 (2012).
Google Scholar
Jonsson, M. & Malmqvist, B. Ecosystem process rate increases with animal species richness: evidence from leaf-eating, aquatic insects. Oikos 89, 519–523 (2000).
Google Scholar
Boyero, L., Ramírez, A., Dudgeon, D. & Pearson, R. G. Are tropical streams really different? J. North Am. Benthol. Soc. 28, 397–403 (2009).
Google Scholar
Jonsson, M., Malmqvist, B. & Hoffsten, P. O. Leaf litter breakdown rates in boreal streams: does shredder species richness matter? Freshw. Biol. 46, 161–171 (2001).
Google Scholar
Cornejo, A. et al. Effects of multiple stressors associated with agriculture on stream macroinvertebrate communities in a tropical catchment. PLoS ONE 14, e0220528 (2019).
Google Scholar
Cornejo, A. et al. A common fungicide impairs stream ecosystem functioning through effects on aquatic hyphomycetes and detritivorous caddisflies. J. Environ. Manag. 263, 110425 (2020).
Google Scholar
Zubrod, J. P. et al. Long-term effects of fungicides on leaf-associated microorganisms and shredder populations-an artificial stream study. Environ. Toxicol. Chem. 36, 2178–2189 (2017).
Google Scholar
Rasmussen, J. J. et al. Effects of a triazole fungicide and a pyrethroid insecticide on the decomposition of leaves in the presence or absence of macroinvertebrate shredders. Aquat. Toxicol. 118-119, 54–61 (2012).
Google Scholar
Dillon, M. E., Wang, G. & Huey, R. B. Global metabolic impacts of recent climate warming. Nature 467, 704–706 (2010).
Google Scholar
Dai, A. Drought under global warming: a review. Clim. Change 2, 45–65 (2011).
Tonin, A. M., Hepp, L. U., Restello, R. M. & Gonçalves, J. F. Understanding of colonization and breakdown of leaves by invertebrates in a tropical stream is enhanced by using biomass as well as count data. Hydrobiologia 740, 79–88 (2014).
Google Scholar
Pérez, J., Basaguren, A., Descals, E., Larrañaga, A. & Pozo, J. Leaf-litter processing in headwater streams of northern Iberian Peninsula: moderate levels of eutrophication do not explain breakdown rates. Hydrobiologia 718, 41–57 (2013).
Google Scholar
Friberg, N. et al. Biomonitoring of human impacts in freshwater ecosystems: the good, the bad and the ugly. Adv. Ecol. Res. 44, 211–278 (2011).
Google Scholar
Pennington, R. T., Cronk, Q. C. B. & Richardson, J. A. Introduction and synthesis: plant phylogeny and the origin of major biomes. Philos. Trans. R. Soc. Lond. B 359, 1455–1464 (2004).
Google Scholar
Proches, S. Latitudinal and longitudinal barriers in global biogeography. Biol. Lett. 2, 69–72 (2006).
Google Scholar
Vanderpoorten, A., Gradstein, S. R., Carine, M. A. & Devos, N. The ghosts of Gondwana and Laurasia in modern liverwort distributions. Biol. Rev. 85, 471–487 (2010).
Google Scholar
Young, R. G., Matthaei, C. D. & Townsend, C. R. Organic matter breakdown and ecosystem metabolism: functional indicators for assessing river ecosystem health. J. North Am. Benthol. Soc. 27, 605–625 (2008).
Google Scholar
Gessner, M. O. & Chauvet, E. A case for using litter breakdown to assess functional stream integrity. Ecol. Appl 12, 498–510 (2002).
Google Scholar
Ramírez A., Pringle C. M., Wantzen K. M. in Tropical Stream Ecology (ed. Dudgeon, D.) (Academic Press, 2008).
Tiegs, S. D., Akinwole, P. O. & Gessner, M. O. Litter decomposition across multiple spatial scales in stream networks. Oecologia 161, 343–351 (2009).
Google Scholar
Ferreira, V. et al. A global assessment of the effects of eucalyptus plantations on stream ecosystem functioning. Ecosystems 22, 629–642 (2018).
Google Scholar
Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
Google Scholar
Boyero, L. et al. Latitude dictates plant diversity effects on decomposition. Sci. Adv. 7, eabe7860 (2021).
Fugère, V., Lostchuck, E. & Chapman, L. J. Litter decomposition in Afrotropical streams: effects of land use, home-field advantage, and terrestrial herbivory. Freshw. Sci. 39, 497–507 (2020).
Fenoy, E. et al. Temperature and substrate chemistry as major drivers of interregional variability of leaf microbial decomposition and cellulolytic activity in headwater streams. FEMS Microbiol. Ecol. 92, fiw169 (2016).
López-Rojo, N. et al. Shifts in key leaf litter traits can predict effects of plant diversity loss on decomposition in streams. Ecosystems 24, 185–196 (2021).
Araneda, M., Pérez, E. P. & Gasca-Leyva, E. White shrimp Penaeus vannamei culture in freshwater at three densities: condition state based on length and weight. Aquaculture 283, 13–18 (2008).
Google Scholar
Weya, J. M., Rumbiak, N. S., Hariyanto, S., Irawan, B. & Soegianto, A. Length-weight relationship and condition factor of crayfish from South Sorong and Jayawijaya, Papua, Indonesia. Croat. J. Fish. 75, 18–24 (2017).
Google Scholar
Poepperl, R. Biomass determination of aquatic invertebrates in the Northern German lowland using the relationship between body length and dry mass. Faunistisch-Ökologische Mitteilungen 7, 379–386 (1998).
Baumgärtner, D. & Rothhaupt, K. O. Predictive length–dry mass regressions for freshwater invertebrates in a pre‐alpine lake littoral. Int. Rev. Hydrobiol. 88, 453–463 (2003).
Google Scholar
Mehler, K., Acharya, K. & Sada, D. W. Spatial and temporal pattern in length-mass regressions of freshwater gastropods in Nevada Spring ecosystems. Malacologia 58, 167–177 (2015).
Google Scholar
Benke, A. C., Huryn, A. D., Smock, L. A. & Wallace, J. B. Length-mass relationships for freshwater macroinvertebrates in North America with particular reference to the southeastern United States. J. North Am. Benthol. Soc. 18, 308–343 (1999).
Google Scholar
Miyasaka, H. et al. Relationships between length and weight of freshwater macroinvertebrates in Japan. Limnology 9, 75–80 (2008).
Google Scholar
Costa, L. C., Kiffer, W. P. J., Casotti, C. G. & Moretti, M. S. Size-mass relationships in Trichodactylus fluviatilis (Decapoda: Brachyura: Trichodactylidae), a macroconsumer in coastal streams of the Atlantic Forest, southeastern Brazil. J. Crust. Biol. 38, 539–546 (2018).
Google Scholar
Wood, S. N. Stable and efficient multiple smoothing parameter estimation for generalized additive models. J. Am. Stat. Assoc. 99, 673–686 (2004).
Google Scholar
Wood S. N. Generalized Additive Models: An Introduction with R 2nd edn (Chapman and Hall/CRC, 2017).
Wagenmakers, E. J. & Farrell, S. AIC model selection using Akaike weights. Psychon. Bull. Rev. 11, 192–196 (2004).
Google Scholar
Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith G. M. Mixed Effects Models and Extensions in Ecology With R (Springer, 2009).
Ieno, E. N. & Zuur, A. F. Beginner’s Guide to Data Exploration and Visualisation with R (2015).
Pinheiro, J. C., Bates, D. M., DebRoy, S., Sarkar, D. & Team R. C. nlme: Linear and Nonlinear Mixed Effects Models. R Package Version 3.1-151. https://CRAN.R-project.org/package=nlme (2020).
Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biom. J. 50, 346–363 (2008).
Google Scholar
Oksanen, J. et al. vegan: Community Ecology Package. R Package Version 2.5-6. https://CRAN.R-project.org/package=vegan) (2019).
Source: Ecology - nature.com