in

Impacts of detritivore diversity loss on instream decomposition are greatest in the tropics

  • 1.

    van der Plas, F. Biodiversity and ecosystem functioning in naturally assembled communities. Biol. Rev. 94, 1220–1245 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 2.

    Isbell, F. et al. Quantifying effects of biodiversity on ecosystem functioning across times and places. Ecol. Lett. 21, 763–778 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 3.

    Naeem, S., Thompson, L. J., Lawler, S. P., Lawton, J. H. & Woodfin, R. M. Declining biodiversity can alter the performance of ecosystems. Nature 368, 734–737 (1994).

    ADS 
    Article 

    Google Scholar 

  • 4.

    Cardinale, B. J. Impacts of biodiversity loss. Science 336, 552–553 (2012).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 5.

    Caliman, A., Pires, A. F., Esteves, F. A., Bozelli, R. L. & Farjalla, V. F. The prominence of and biases in biodiversity and ecosystem functioning research. Biodivers. Conserv 19, 651–664 (2010).

    Article 

    Google Scholar 

  • 6.

    Cardinale, B. J. et al. The functional role of producer diversity in ecosystems. Am. J. Bot. 98, 572–592 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 7.

    Porre R. J., van der Werf W., De Deyn G. B., Stomph T. J. & Hoffland E. Is litter decomposition enhanced in species mixtures? A meta-analysis. Soil Biol. Biochem. 145, 107791 (2020).

  • 8.

    Kou, L. et al. Diversity-decomposition relationships in forests worldwide. eLife 9, e55813 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 9.

    Srivastava, D. et al. Diversity has stronger top-down than bottom-up effects on decomposition. Ecology 90, 1073–1083 (2009).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 10.

    Gessner, M. O. et al. Diversity meets decomposition. Trends Ecol. Evol. 25, 372–380 (2010).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 11.

    Cebrian, J. Patterns in the fate of production in plant communities. Am. Nat. 154, 449–468 (1999).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 12.

    Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R. & Cushing, C. E. The river continuum concept. Can. J. Fish. Aquat. Sci. 37, 130–137 (1980).

    Article 

    Google Scholar 

  • 13.

    Raymond, P. A. et al. Global carbon dioxide emissions from inland waters. Nature 503, 355–359 (2013).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 14.

    Hotchkiss, E. R. et al. Sources of and processes controlling CO2 emissions change with the size of streams and rivers. Nat. Geosci. 8, 696–699 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 15.

    Yao, Y. et al. Increased global nitrous oxide emissions from streams and rivers in the Anthropocene. Nat. Clim. Change 10, 138–142 (2019).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 16.

    Gessner, M. O., Chauvet, E. & Dobson, M. A perspective on leaf litter breakdown in streams. Oikos 85, 377–384 (1999).

    Article 

    Google Scholar 

  • 17.

    Marks, J. C. Revisiting the fates of dead leaves that fall into streams. Annu. Rev. Ecol. Evol. Syst. 50, 547–568 (2019).

    Article 

    Google Scholar 

  • 18.

    Tonin, A. M. et al. Interactions between large and small detritivores influence how biodiversity impacts litter decomposition. J. Anim. Ecol. 87, 1465–1474 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 19.

    Jonsson, M. & Malmqvist, B. Mechanisms behind positive diversity effects on ecosystem functioning: testing the facilitation and interference hypotheses. Oecologia 134, 554–559 (2003).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 20.

    Bastian, M., Pearson, R. G. & Boyero, L. Effects of diversity loss on ecosystem function across trophic levels and ecosystems: a test in a detritus-based tropical food web. Austral. Ecol. 33, 301–306 (2008).

    Article 

    Google Scholar 

  • 21.

    McKie, B. G., Schindler, M., Gessner, M. O. & Malmqvist, B. Placing biodiversity and ecosystem functioning in context: environmental perturbations and the effects of species richness in a stream field experiment. Oecologia 160, 757–770 (2009).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 22.

    McKie, B. G. et al. Ecosystem functioning in stream assemblages from different regions: contrasting responses to variation in detritivore richness, evenness and density. J. Anim. Ecol. 77, 495–504 (2008).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 23.

    Tylianakis, J. M. Resource heterogeneity moderates the biodiversity-function relationship in real world ecosystems. PLoS Biol. 6, e122 (2008).

    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 24.

    Boyero, L. et al. A global experiment suggests climate warming will not accelerate litter decomposition in streams but may reduce carbon sequestration. Ecol. Lett. 14, 289–294 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 25.

    Boyero, L. et al. Global patterns of stream detritivore distribution: implications for biodiversity loss in changing climates. Glob. Ecol. Biogeogr. 21, 134–141 (2012).

    Article 

    Google Scholar 

  • 26.

    Boyero, L. et al. Global distribution of a key trophic guild contrasts with common latitudinal diversity patterns. Ecology 92, 1839–1848 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 27.

    Handa, I. T. et al. Consequences of biodiversity loss for litter decomposition across biomes. Nature 509, 218–221 (2014).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 28.

    Borer, E. T. et al. Finding generality in ecology: a model for globally distributed experiments. Methods Ecol. Evol. 5, 65–73 (2014).

    Article 

    Google Scholar 

  • 29.

    Fraser, L. H. et al. Coordinated distributed experiments: an emerging tool for testing global hypotheses in ecology and environmental science. Front. Ecol. Environ. 11, 147–155 (2013).

    Article 

    Google Scholar 

  • 30.

    Woodward, G. et al. Continental-scale effects of nutrient pollution on stream ecosystem functioning. Science 336, 1438–1440 (2012).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 31.

    Jonsson, M. & Malmqvist, B. Ecosystem process rate increases with animal species richness: evidence from leaf-eating, aquatic insects. Oikos 89, 519–523 (2000).

    Article 

    Google Scholar 

  • 32.

    Boyero, L., Ramírez, A., Dudgeon, D. & Pearson, R. G. Are tropical streams really different? J. North Am. Benthol. Soc. 28, 397–403 (2009).

    Article 

    Google Scholar 

  • 33.

    Jonsson, M., Malmqvist, B. & Hoffsten, P. O. Leaf litter breakdown rates in boreal streams: does shredder species richness matter? Freshw. Biol. 46, 161–171 (2001).

    Article 

    Google Scholar 

  • 34.

    Cornejo, A. et al. Effects of multiple stressors associated with agriculture on stream macroinvertebrate communities in a tropical catchment. PLoS ONE 14, e0220528 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 35.

    Cornejo, A. et al. A common fungicide impairs stream ecosystem functioning through effects on aquatic hyphomycetes and detritivorous caddisflies. J. Environ. Manag. 263, 110425 (2020).

    CAS 
    Article 

    Google Scholar 

  • 36.

    Zubrod, J. P. et al. Long-term effects of fungicides on leaf-associated microorganisms and shredder populations-an artificial stream study. Environ. Toxicol. Chem. 36, 2178–2189 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 37.

    Rasmussen, J. J. et al. Effects of a triazole fungicide and a pyrethroid insecticide on the decomposition of leaves in the presence or absence of macroinvertebrate shredders. Aquat. Toxicol. 118-119, 54–61 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 38.

    Dillon, M. E., Wang, G. & Huey, R. B. Global metabolic impacts of recent climate warming. Nature 467, 704–706 (2010).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 39.

    Dai, A. Drought under global warming: a review. Clim. Change 2, 45–65 (2011).

    Google Scholar 

  • 40.

    Tonin, A. M., Hepp, L. U., Restello, R. M. & Gonçalves, J. F. Understanding of colonization and breakdown of leaves by invertebrates in a tropical stream is enhanced by using biomass as well as count data. Hydrobiologia 740, 79–88 (2014).

    Article 

    Google Scholar 

  • 41.

    Pérez, J., Basaguren, A., Descals, E., Larrañaga, A. & Pozo, J. Leaf-litter processing in headwater streams of northern Iberian Peninsula: moderate levels of eutrophication do not explain breakdown rates. Hydrobiologia 718, 41–57 (2013).

    Article 

    Google Scholar 

  • 42.

    Friberg, N. et al. Biomonitoring of human impacts in freshwater ecosystems: the good, the bad and the ugly. Adv. Ecol. Res. 44, 211–278 (2011).

    Article 

    Google Scholar 

  • 43.

    Pennington, R. T., Cronk, Q. C. B. & Richardson, J. A. Introduction and synthesis: plant phylogeny and the origin of major biomes. Philos. Trans. R. Soc. Lond. B 359, 1455–1464 (2004).

    Article 

    Google Scholar 

  • 44.

    Proches, S. Latitudinal and longitudinal barriers in global biogeography. Biol. Lett. 2, 69–72 (2006).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 45.

    Vanderpoorten, A., Gradstein, S. R., Carine, M. A. & Devos, N. The ghosts of Gondwana and Laurasia in modern liverwort distributions. Biol. Rev. 85, 471–487 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 46.

    Young, R. G., Matthaei, C. D. & Townsend, C. R. Organic matter breakdown and ecosystem metabolism: functional indicators for assessing river ecosystem health. J. North Am. Benthol. Soc. 27, 605–625 (2008).

    Article 

    Google Scholar 

  • 47.

    Gessner, M. O. & Chauvet, E. A case for using litter breakdown to assess functional stream integrity. Ecol. Appl 12, 498–510 (2002).

    Article 

    Google Scholar 

  • 48.

    Ramírez A., Pringle C. M., Wantzen K. M. in Tropical Stream Ecology (ed. Dudgeon, D.) (Academic Press, 2008).

  • 49.

    Tiegs, S. D., Akinwole, P. O. & Gessner, M. O. Litter decomposition across multiple spatial scales in stream networks. Oecologia 161, 343–351 (2009).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 50.

    Ferreira, V. et al. A global assessment of the effects of eucalyptus plantations on stream ecosystem functioning. Ecosystems 22, 629–642 (2018).

    Article 

    Google Scholar 

  • 51.

    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article 

    Google Scholar 

  • 52.

    Boyero, L. et al. Latitude dictates plant diversity effects on decomposition. Sci. Adv. 7, eabe7860 (2021).

  • 53.

    Fugère, V., Lostchuck, E. & Chapman, L. J. Litter decomposition in Afrotropical streams: effects of land use, home-field advantage, and terrestrial herbivory. Freshw. Sci. 39, 497–507 (2020).

  • 54.

    Fenoy, E. et al. Temperature and substrate chemistry as major drivers of interregional variability of leaf microbial decomposition and cellulolytic activity in headwater streams. FEMS Microbiol. Ecol. 92, fiw169 (2016).

  • 55.

    López-Rojo, N. et al. Shifts in key leaf litter traits can predict effects of plant diversity loss on decomposition in streams. Ecosystems 24, 185–196 (2021).

  • 56.

    Araneda, M., Pérez, E. P. & Gasca-Leyva, E. White shrimp Penaeus vannamei culture in freshwater at three densities: condition state based on length and weight. Aquaculture 283, 13–18 (2008).

    Article 

    Google Scholar 

  • 57.

    Weya, J. M., Rumbiak, N. S., Hariyanto, S., Irawan, B. & Soegianto, A. Length-weight relationship and condition factor of crayfish from South Sorong and Jayawijaya, Papua, Indonesia. Croat. J. Fish. 75, 18–24 (2017).

    Article 

    Google Scholar 

  • 58.

    Poepperl, R. Biomass determination of aquatic invertebrates in the Northern German lowland using the relationship between body length and dry mass. Faunistisch-Ökologische Mitteilungen 7, 379–386 (1998).

    Google Scholar 

  • 59.

    Baumgärtner, D. & Rothhaupt, K. O. Predictive length–dry mass regressions for freshwater invertebrates in a pre‐alpine lake littoral. Int. Rev. Hydrobiol. 88, 453–463 (2003).

    Article 

    Google Scholar 

  • 60.

    Mehler, K., Acharya, K. & Sada, D. W. Spatial and temporal pattern in length-mass regressions of freshwater gastropods in Nevada Spring ecosystems. Malacologia 58, 167–177 (2015).

    Article 

    Google Scholar 

  • 61.

    Benke, A. C., Huryn, A. D., Smock, L. A. & Wallace, J. B. Length-mass relationships for freshwater macroinvertebrates in North America with particular reference to the southeastern United States. J. North Am. Benthol. Soc. 18, 308–343 (1999).

    Article 

    Google Scholar 

  • 62.

    Miyasaka, H. et al. Relationships between length and weight of freshwater macroinvertebrates in Japan. Limnology 9, 75–80 (2008).

    Article 

    Google Scholar 

  • 63.

    Costa, L. C., Kiffer, W. P. J., Casotti, C. G. & Moretti, M. S. Size-mass relationships in Trichodactylus fluviatilis (Decapoda: Brachyura: Trichodactylidae), a macroconsumer in coastal streams of the Atlantic Forest, southeastern Brazil. J. Crust. Biol. 38, 539–546 (2018).

    Article 

    Google Scholar 

  • 64.

    Wood, S. N. Stable and efficient multiple smoothing parameter estimation for generalized additive models. J. Am. Stat. Assoc. 99, 673–686 (2004).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • 65.

    Wood S. N. Generalized Additive Models: An Introduction with R 2nd edn (Chapman and Hall/CRC, 2017).

  • 66.

    Wagenmakers, E. J. & Farrell, S. AIC model selection using Akaike weights. Psychon. Bull. Rev. 11, 192–196 (2004).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 67.

    Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith G. M. Mixed Effects Models and Extensions in Ecology With R (Springer, 2009).

  • 68.

    Ieno, E. N. & Zuur, A. F. Beginner’s Guide to Data Exploration and Visualisation with R (2015).

  • 69.

    Pinheiro, J. C., Bates, D. M., DebRoy, S., Sarkar, D. & Team R. C. nlme: Linear and Nonlinear Mixed Effects Models. R Package Version 3.1-151. https://CRAN.R-project.org/package=nlme (2020).

  • 70.

    Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biom. J. 50, 346–363 (2008).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • 71.

    Oksanen, J. et al. vegan: Community Ecology Package. R Package Version 2.5-6. https://CRAN.R-project.org/package=vegan) (2019).


  • Source: Ecology - nature.com

    Imagining the distant past — and finding keys to the future

    Salmon going viral