in

Implications of size-dependent tree mortality for tropical forest carbon dynamics

  • 1.

    Beer, C. et al. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329, 834–838 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 2.

    Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 3.

    Mitchard, E. T. A. The tropical forest carbon cycle and climate change. Nature 559, 527–534 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 4.

    Lutz, J. A. et al. Global importance of large-diameter trees. Glob. Ecol. Biogeogr. 27, 849–864 (2018).

    Article 

    Google Scholar 

  • 5.

    Meakem, V. et al. Role of tree size in moist tropical forest carbon cycling and water deficit responses. New Phytol. 219, 947–958 (2017).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 6.

    Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 7.

    McDowell, N. et al. Drivers and mechanisms of tree mortality in moist tropical forests. New Phytol. 219, 851–869 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 8.

    Camac, J. S. et al. Partitioning mortality into growth-dependent and growth-independent hazards across 203 tropical tree species. Proc. Natl Acad. Sci. USA 115, 12459 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 9.

    Condit, R., Hubbell, S. P. & Foster, R. B. Mortality rates of 205 neotropical tree and shrub species and the impact of a severe drought. Ecol. Monogr. 65, 419–439 (1995).

    Article 

    Google Scholar 

  • 10.

    McDowell, N. G. et al. Pervasive shifts in forest dynamics in a changing world. Science 368, eaaz9463 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 11.

    Stephenson, N. L. et al. Rate of tree carbon accumulation increases continuously with tree size. Nature 507, 90–93 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 12.

    Forrester, D. I. Does individual-tree biomass growth increase continuously with tree size? For. Ecol. Manag. 481, 118717 (2021).

    Article 

    Google Scholar 

  • 13.

    Sheil, D. et al. Does biomass growth increase in the largest trees? Flaws, fallacies and alternative analyses. Funct. Ecol. 31, 568–581 (2017).

    Article 

    Google Scholar 

  • 14.

    Condit, R., Pérez, R., Lao, S., Aguilar, S. & Hubbell, S. P. Demographic trends and climate over 35 years in the Barro Colorado 50 ha plot. For. Ecosyst. 4, 17 (2017).

    Article 

    Google Scholar 

  • 15.

    McMahon, S. M., Arellano, G. & Davies, S. J. The importance and challenges of detecting changes in forest mortality rates. Ecosphere 10, e02615 (2019).

    Article 

    Google Scholar 

  • 16.

    Aleixo, I. et al. Amazonian rainforest tree mortality driven by climate and functional traits. Nat. Clim. Change 9, 384–388 (2019).

    Article 

    Google Scholar 

  • 17.

    Parlato, B., Gora, E. M. & Yanoviak, S. P. Lightning damage facilitates beetle colonization of tropical trees. Ann. Entomol. Soc. Am. 113, 447–451 (2020).

    Google Scholar 

  • 18.

    Franklin, J. F., Shugart, H. H. & Harmon, M. E. Tree death as an ecological process. Bioscience 37, 550–556 (1987).

    Article 

    Google Scholar 

  • 19.

    Gale, N. & Hall, P. Factors determining the modes of tree death in three Bornean rain forests. J. Veg. Sci. 12, 337–348 (2001).

    Article 

    Google Scholar 

  • 20.

    Fontes, C. G., Chambers, J. Q. & Higuchi, N. Revealing the causes and temporal distribution of tree mortality in Central Amazonia. For. Ecol. Manag. 424, 177–183 (2018).

    Article 

    Google Scholar 

  • 21.

    de Toledo, J. J., Magnusson, W. E. & Castilho, C. V. Competition, exogenous disturbances and senescence shape tree size distribution in tropical forest: evidence from tree mode of death in Central Amazonia. J. Veg. Sci. 24, 651–663 (2013).

    Article 

    Google Scholar 

  • 22.

    Bennett, A. C., McDowell, N. G., Allen, C. D. & Anderson-Teixeira, K. J. Larger trees suffer most during drought in forests worldwide. Nat. Plants 1, 15139 (2015).

    PubMed 
    Article 

    Google Scholar 

  • 23.

    Yanoviak, S. P. et al. Lightning is a major cause of large tropical tree mortality in a lowland neotropical forest. New Phytol. 225, 1936–1944 (2020).

    PubMed 
    Article 

    Google Scholar 

  • 24.

    Rifai, S. W. et al. Landscape-scale consequences of differential tree mortality from catastrophic wind disturbance in the Amazon. Ecol. Appl. 26, 2225–2237 (2016).

    PubMed 
    Article 

    Google Scholar 

  • 25.

    McDowell, N. G. & Allen, C. D. Darcy’s law predicts widespread forest mortality under climate warming. Nat. Clim. Change 5, 669–672 (2015).

    Article 

    Google Scholar 

  • 26.

    Williams, A. P. et al. Temperature as a potent driver of regional forest drought stress and tree mortality. Nat. Clim. Change 3, 292–297 (2013).

    Article 

    Google Scholar 

  • 27.

    Sperry, J. S. & Love, D. M. What plant hydraulics can tell us about responses to climate-change droughts. New Phytol. 207, 14–27 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 28.

    Roberts, J., Osvaldo, M. R. C. & De Aguiar, L. F. Stomatal and boundary-layer conductances in an Amazonian terra firme rain forest. J. Appl. Ecol. 27, 336–353 (1990).

    Article 

    Google Scholar 

  • 29.

    Olson, M. E. et al. Plant height and hydraulic vulnerability to drought and cold. Proc. Natl Acad. Sci. USA 115, 7551–7556 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 30.

    McGregor, I. R. et al. Tree height and leaf drought tolerance traits shape growth responses across droughts in a temperate broadleaf forest. New Phytol. https://doi.org/10.1111/nph.16996 (2020).

  • 31.

    Mencuccini, M. et al. Size-mediated ageing reduces vigour in trees. Ecol. Lett. 8, 1183–1190 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 32.

    McDowell, N. G. et al. The interdependence of mechanisms underlying climate-driven vegetation mortality. Trends Ecol. Evol. 26, 523–532 (2011).

    PubMed 
    Article 

    Google Scholar 

  • 33.

    Phillips, O. L. et al. Drought–mortality relationships for tropical forests. New Phytol. 187, 631–646 (2010).

    PubMed 
    Article 

    Google Scholar 

  • 34.

    Nepstad, D. C., Tohver, I. M., Ray, D., Moutinho, P. & Cardinot, G. Mortality of large trees and lianas following experimental drought in an Amazon forest. Ecology 88, 2259–2269 (2007).

    PubMed 
    Article 

    Google Scholar 

  • 35.

    da Costa, A. C. L. et al. Effect of 7 yr of experimental drought on vegetation dynamics and biomass storage of an eastern Amazonian rainforest. New Phytol. 187, 579–591 (2010).

    PubMed 
    Article 

    Google Scholar 

  • 36.

    Rowland, L. et al. Death from drought in tropical forests is triggered by hydraulics not carbon starvation. Nature 528, 119–122 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 37.

    Bartholomew, D. C. et al. Small tropical forest trees have a greater capacity to adjust carbon metabolism to long-term drought than large canopy trees. Plant Cell Environ. 43, 2380–2393 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 38.

    Fauset, S. et al. Drought-induced shifts in the floristic and functional composition of tropical forests in Ghana. Ecol. Lett. 15, 1120–1129 (2012).

    PubMed 
    Article 

    Google Scholar 

  • 39.

    Zuleta, D., Duque, A., Cardenas, D., Muller-Landau, H. C. & Davies, S. J. Drought-induced mortality patterns and rapid biomass recovery in a terra firme forest in the Colombian Amazon. Ecology 98, 2538–2546 (2017).

    PubMed 
    Article 

    Google Scholar 

  • 40.

    van der Meer, P. J. & Bongers, F. Patterns of tree-fall and branch-fall in a tropical rain forest in French Guiana. J. Ecol. 84, 19–29 (1996).

    Article 

    Google Scholar 

  • 41.

    Parker, G. G. in Forest canopies (eds Lowman, M. D. & Nadkarni, N. M.) 73–106 (Academic Press, 1995).

  • 42.

    Terborgh, J., Huanca Nuñez, N., Feeley, K. & Beck, H. Gaps present a trade-off between dispersal and establishment that nourishes species diversity. Ecology 101, e02996 (2020).

    PubMed 
    Article 

    Google Scholar 

  • 43.

    Ribeiro, G. H. P. M. et al. Mechanical vulnerability and resistance to snapping and uprooting for Central Amazon tree species. For. Ecol. Manag. 380, 1–10 (2016).

    Article 

    Google Scholar 

  • 44.

    Peterson, C. J. et al. Critical wind speeds suggest wind could be an important disturbance agent in Amazonian forests. Forestry 92, 444–459 (2019).

    Article 

    Google Scholar 

  • 45.

    Uriarte, M., Thompson, J. & Zimmerman, J. K. Hurricane María tripled stem breaks and doubled tree mortality relative to other major storms. Nat. Commun. 10, 1362 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 46.

    Silvério, D. V. et al. Fire, fragmentation, and windstorms: a recipe for tropical forest degradation. J. Ecol. 107, 656–667 (2019).

    Article 

    Google Scholar 

  • 47.

    van Wilgen, B. W., Biggs, H. C., Mare, N. & O’Regan, S. P. A fire history of the savanna ecosystems in the Kruger National Park, South Africa, between 1941 and 1996. S. Afr. J. Sci. 96, 167–178 (2000).

    Google Scholar 

  • 48.

    Tutin, C. E. G., White, L. J. T. & Mackanga-Missandzou, A. Lightning strike burns large forest tree in the Lope Reserve, Gabon. Glob. Ecol. Biogeog. Lett. 5, 36–41 (1996).

    Article 

    Google Scholar 

  • 49.

    Magnusson, W. E., Lima, A. P. & de Lima, O. Group lightning mortality of trees in a Neotropical forest. J. Trop. Ecol. 12, 899–903 (1996).

    Article 

    Google Scholar 

  • 50.

    Anderson, J. A. R. Observations on climatic damage in peat swamp forest in Sarawak. Commonw. Forestry Rev. 43, 145–158 (1964).

    Google Scholar 

  • 51.

    Gora, E. M., Burchfield, J. C., Muller-Landau, H. C., Bitzer, P. M. & Yanoviak, S. P. Pantropical geography of lightning-caused disturbance and its implications for tropical forests. Glob. Change Biol. 26, 5017–5026 (2020).

    Article 

    Google Scholar 

  • 52.

    Gora, E. M. et al. A mechanistic and empirically-supported lightning risk model for forest trees. J. Ecol. 108, 1956–1966 (2020).

    Article 

    Google Scholar 

  • 53.

    Alencar, A., Nepstad, D. & Diaz, M. C. V. Forest understory fire in the Brazilian Amazon in ENSO and non-ENSO years: area burned and committed carbon emissions. Earth Interact. 10, 1–17 (2009).

    Article 

    Google Scholar 

  • 54.

    Brando, P. M. et al. Droughts, wildfires, and forest carbon cycling: A pantropical synthesis. Annu. Rev. Earth Planet. Sci. 47, 555–581 (2019).

    CAS 
    Article 

    Google Scholar 

  • 55.

    Cochrane, M. A. Fire science for rainforests. Nature 421, 913–919 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 56.

    Kauffman, J. B. & Uhl, C. in Fire in the Tropical Biota. Ecological Studies (Analysis and Synthesis) Vol. 84 (ed. Goldammer, J. G.) (Springer, 1990).

  • 57.

    Pfeiffer, M., Spessa, A. & Kaplan, J. O. A model for global biomass burning in preindustrial time: LPJ-LMfire (v1.0). Geosci. Model Dev. 6, 643–685 (2013).

    Article 
    CAS 

    Google Scholar 

  • 58.

    Nepstad, D. C. et al. Large-scale impoverishment of Amazonian forests by logging and fire. Nature 398, 505–508 (1999).

    CAS 
    Article 

    Google Scholar 

  • 59.

    Ray, D., Nepstad, D. & Moutinho, P. Micrometeorological and canopy controls of fire susceptibility in a forested Amazon landscape. Ecol. Appl. 15, 1664–1678 (2005).

    Article 

    Google Scholar 

  • 60.

    Brando, P. M. et al. Fire-induced tree mortality in a neotropical forest: the roles of bark traits, tree size, wood density and fire behavior. Glob. Change Biol. 18, 630–641 (2012).

    Article 

    Google Scholar 

  • 61.

    Barlow, J., Peres, C. A., Lagan, B. O. & Haugaasen, T. Large tree mortality and the decline of forest biomass following Amazonian wildfires. Ecol. Lett. 6, 6–8 (2003).

    Article 

    Google Scholar 

  • 62.

    Liebhold, A. M., MacDonald, W. L., Bergdahl, D. & Mastro, V. C. Invasion by Exotic Forest Pests: A Threat to Forest Ecosystems Forest Science Monographs 30 (Society of American Foresters, 1995).

  • 63.

    McGregor, I. R. et al. Tree height and leaf drought tolerance traits shape growth responses across droughts in a temperate broadleaf forest. New Phytol. https://doi.org/10.1111/nph.16996 (2020).

  • 64.

    Gilbert, G. S. & Hubbell, S. P. Plant diseases and the conservation of tropical forests. BioScience 46, 98–106 (1996).

    Article 

    Google Scholar 

  • 65.

    Liu, X. et al. Dilution effect of plant diversity on infectious diseases: latitudinal trend and biological context dependence. Oikos 129, 457–465 (2020).

    Article 

    Google Scholar 

  • 66.

    Chen, L. et al. Differential soil fungus accumulation and density dependence of trees in a subtropical forest. Science 366, 124 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 67.

    Bell, T., Freckleton, R. P. & Lewis, O. T. Plant pathogens drive density-dependent seedling mortality in a tropical tree. Ecol. Lett. 9, 569–574 (2006).

    PubMed 
    Article 

    Google Scholar 

  • 68.

    Peters, H. A. Neighbour-regulated mortality: the influence of positive and negative density dependence on tree populations in species-rich tropical forests. Ecol. Lett. 6, 757–765 (2003).

    Article 

    Google Scholar 

  • 69.

    Gilbert, G. S., Foster, R. B. & Hubbell, S. P. Density and distance-to-adult effects of a canker disease of trees in a moist tropical forest. Oecologia 98, 100–108 (1994).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 70.

    Coley, P. D. & Barone, J. A. Herbivory and plant defenses in tropical forests. Annu. Rev. Ecol. Syst. 27, 305–335 (1996).

    Article 

    Google Scholar 

  • 71.

    Suresh, H. S., Dattaraja, H. S. & Sukumar, R. Relationship between annual rainfall and tree mortality in a tropical dry forest: results of a 19-year study at Mudumalai, southern India. For. Ecol. Manag. 259, 762–769 (2010).

    Article 

    Google Scholar 

  • 72.

    Forrister, D. L., Endara, M.-J., Younkin, G. C., Coley, P. D. & Kursar, T. A. Herbivores as drivers of negative density dependence in tropical forest saplings. Science 363, 1213 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 73.

    Stephenson, N. L., Das, A. J., Ampersee, N. J., Bulaon, B. M. & Yee, J. L. Which trees die during drought? The key role of insect host-tree selection. J. Ecol. 107, 2383–2401 (2019).

    Article 

    Google Scholar 

  • 74.

    Wing, L. D. & Buss, I. O. Elephants and forests. Wildl. Monogr. 19, 3–92 (1970).

  • 75.

    Berzaghi, F. et al. Carbon stocks in central African forests enhanced by elephant disturbance. Nat. Geosci. 12, 725–729 (2019).

    CAS 
    Article 

    Google Scholar 

  • 76.

    Muller-Landau, H. C. et al. Testing metabolic ecology theory for allometric scaling of tree size, growth and mortality in tropical forests. Ecol. Lett. 9, 575–588 (2006).

    PubMed 
    Article 

    Google Scholar 

  • 77.

    Rüger, N. et al. Beyond the fast–slow continuum: demographic dimensions structuring a tropical tree community. Ecol. Lett. 7, 1075–1084 (2018).

    Article 

    Google Scholar 

  • 78.

    Montgomery, R. A. & Chazdon, R. L. Forest structure, canopy architecture, and light transmittance in old-growth and secondgrowth tropical rain forests. Ecology 82, 2707–2718 (2001).

    Article 

    Google Scholar 

  • 79.

    Kobe, R. K. Carbohydrate allocation to storage as a basis of interspecific variation in sapling survivorship and growth. Oikos 80, 226–233 (1997).

    Article 

    Google Scholar 

  • 80.

    Waring, B. G. & Powers, J. S. Overlooking what is underground: root:shoot ratios and coarse root allometric equations for tropical forests. For. Ecol. Manag. 385, 10–15 (2017).

    Article 

    Google Scholar 

  • 81.

    Poorter, H. et al. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytol. 193, 30–50 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 82.

    Casper, B. B. & Jackson, R. B. Plant competition underground. Annu. Rev. Ecol. Syst. 28, 545–570 (1997).

    Article 

    Google Scholar 

  • 83.

    Coomes, D. A., Duncan, R. P., Allen, R. B. & Truscott, J. Disturbances prevent stem size–density distributions in natural forests from following scaling relationships. Ecol. Lett. 6, 980–989 (2003).

    Article 

    Google Scholar 

  • 84.

    Pillet, M. et al. Disentangling competitive vs. climatic drivers of tropical forest mortality. J. Ecol. 106, 1165–1179 (2018).

    Article 

    Google Scholar 

  • 85.

    Rozendaal, D. M. A. et al. Competition influences tree growth, but not mortality, across environmental gradients in Amazonia and tropical Africa. Ecology 101, e03052 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 86.

    Rodríguez-Ronderos, M. E., Bohrer, G., Sanchez-Azofeifa, A., Powers, J. S. & Schnitzer, S. A. Contribution of lianas to plant area index and canopy structure in a Panamanian forest. Ecology 97, 3271–3277 (2016).

    PubMed 
    Article 

    Google Scholar 

  • 87.

    Schnitzer, S. A., Kuzee, M. E. & Bongers, F. Disentangling above- and below-ground competition between lianas and trees in a tropical forest. J. Ecol. 93, 1115–1125 (2005).

    Article 

    Google Scholar 

  • 88.

    Putz, F. E. The natural history of lianas on Barro Colorado Island, Panama. Ecology 65, 1713–1724 (1984).

    Article 

    Google Scholar 

  • 89.

    van der Heijden, G. M. F., Powers, J. S. & Schnitzer, S. A. Lianas reduce carbon accumulation and storage in tropical forests. Proc. Natl Acad. Sci. USA 112, 13267–13271 (2015).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 90.

    Visser, M. D. et al. Tree species vary widely in their tolerance for liana infestation: A case study of differential host response to generalist parasites. J. Ecol. 106, 781–794 (2018).

    CAS 
    Article 

    Google Scholar 

  • 91.

    Schnitzer, S. A. & Bongers, F. The ecology of lianas and their role in forests. Trends Ecol. Evol. 17, 223–230 (2002).

    Article 

    Google Scholar 

  • 92.

    García León, M. M., Martínez Izquierdo, L., Mello, F. N. A., Powers, J. S. & Schnitzer, S. A. Lianas reduce community-level canopy tree reproduction in a Panamanian forest. J. Ecol. 106, 737–745 (2018).

    Article 
    CAS 

    Google Scholar 

  • 93.

    Reis, S. M. et al. Causes and consequences of liana infestation in Southern Amazonia. J. Ecol. 108, 2184–2197 (2020).

    Article 

    Google Scholar 

  • 94.

    Sheil, D., Salim, A., Chave, J., Vanclay, J. & Hawthorne, W. D. Illumination–size relationships of 109 coexisting tropical forest tree species. J. Ecol. 94, 494–507 (2006).

    Article 

    Google Scholar 

  • 95.

    Myers, J. A. & Kitajima, K. Carbohydrate storage enhances seedling shade and stress tolerance in a neotropical forest. J. Ecol. 95, 383–395 (2007).

    CAS 
    Article 

    Google Scholar 

  • 96.

    Hartmann, H. & Trumbore, S. Understanding the roles of nonstructural carbohydrates in forest trees—from what we can measure to what we want to know. New Phytol. 211, 386–403 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 97.

    Enquist, B. J., West, G. B., Charnov, E. L. & Brown, J. H. Allometric scaling of production and life-history variation in vascular plants. Nature 401, 907–911 (1999).

    CAS 
    Article 

    Google Scholar 

  • 98.

    Hubau, W. et al. The persistence of carbon in the African forest understory. Nat. Plants 5, 133–140 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 99.

    Chambers, J. Q., Higuchi, N. & Schimel, J. P. Ancient trees in Amazonia. Nature 391, 135–136 (1998).

    CAS 
    Article 

    Google Scholar 

  • 100.

    Poorter, L. & Kitajima, K. Carbohydrate storage and light requirements of tropical moist and dry forest tree species. Ecology 88, 1000–1011 (2007).

    PubMed 
    Article 

    Google Scholar 

  • 101.

    Conrath, U. et al. Priming: getting ready for battle. Mol. Plant Microbe Interact. 19, 1062–1071 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 102.

    Arellano, G., Medina, N. G., Tan, S., Mohamad, M. & Davies, S. J. Crown damage and the mortality of tropical trees. New Phytol. 221, 169–179 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 103.

    Zhang, Y.-J. et al. Size‐dependent mortality in a Neotropical savanna tree: the role of height‐related adjustments in hydraulic architecture and carbon allocation. Plant Cell Environ. 32, 1456–1466 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 104.

    Feldpausch, T. R. et al. Amazon forest response to repeated droughts. Glob. Biogeochem. Cycles 30, 964–982 (2016).

    CAS 
    Article 

    Google Scholar 

  • 105.

    Phillips, O. L. et al. Drought sensitivity of the Amazon rainforest. Science 323, 1344–1347 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 106.

    Harel, M. & Price, C. Thunderstorm trends over Africa. J. Clim. 33, 2741–2755 (2020).

    Article 

    Google Scholar 

  • 107.

    IPCC Climate Change 2014: Impacts, Adaptation, and Vulnerability (Cambridge Univ. Press, 2014).

  • 108.

    Fu, Z. et al. Recovery time and state change of terrestrial carbon cycle after disturbance. Environ. Res. Lett. 12, 104004 (2017).

    Article 

    Google Scholar 

  • 109.

    Poorter, L. et al. Biomass resilience of Neotropical secondary forests. Nature 530, 211–214 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 110.

    Cook-Patton, S. C. et al. Mapping carbon accumulation potential from global natural forest regrowth. Nature 585, 545–550 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 111.

    Esquivel-Muelbert, A. et al. Compositional response of Amazon forests to climate change. Glob. Change Biol. 25, 39–56 (2019).

    Article 

    Google Scholar 

  • 112.

    Hirota, M., Holmgren, M., Van Nes, E. H. & Scheffer, M. Global resilience of tropical forest and savanna to critical transitions. Science 334, 232–235 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 113.

    Banin, L. et al. What controls tropical forest architecture? Testing environmental, structural and floristic drivers. Glob. Ecol. Biogeogr. 21, 1179–1190 (2012).

    Article 

    Google Scholar 

  • 114.

    Brando, P. et al. Effects of partial throughfall exclusion on the phenology of Coussarea racemosa (Rubiaceae) in an east-central Amazon rainforest. Oecologia 150, 181–189 (2006).

    PubMed 
    Article 

    Google Scholar 

  • 115.

    Lugo, A. E. & Scatena, F. N. Background and catastrophic tree mortality in tropical moist, wet, and rain forests. Biotropica 28, 585–599 (1996).

    Article 

    Google Scholar 

  • 116.

    Feeley, K. J., Bravo-Avila., Fadrique, B., Perez, T. M. & Zuleta, D. Climate-driven changes in the composition of New World plant communities. Nat. Clim. Change 10, 965–970 (2020).

    CAS 
    Article 

    Google Scholar 

  • 117.

    Brienen, R. J. W. et al. Forest carbon sink neutralized by pervasive growth–lifespan trade-offs. Nat. Commun. 11, 4241 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 118.

    Bugmann, H. et al. Tree mortality submodels drive simulated long-term forest dynamics: assessing 15 models from the stand to global scale. Ecosphere 10, e02616 (2019).

    Article 

    Google Scholar 

  • 119.

    Arellano, G., Zuleta, D. & Davies, S. J. Tree death and damage: A standardized protocol for frequent surveys in tropical forests. J. Veg. Sci. 32, e12981 (2021).

    Article 

    Google Scholar 

  • 120.

    Chan, K.-J., Phillips, O. L., Monteagudo, A., Torres-Lezama, A. & Vásquez Martínez, R. How do trees die? Mode of death in northern Amazonia. J. Veg. Sci. 20, 260–268 (2009).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Cooling homes without warming the planet

    Powering the energy transition with better storage