Cartwright, P. et al. Exceptionally preserved jellyfishes from the middle Cambrian. PLoS One 2, e1121 (2007).
Google Scholar
Walcott, C. D. Cambrian Geology and Paleontology II: No. 3—Middle Cambrian Holothurians and Medusae Vol. 3 (Smithsonian Institution, 1911).
Willoughby, R. H. & Robison, R. A. Medusoids from the Middle Cambrian of Utah. J. Paleontol. 53, 494–500 (1979).
Rigby, S. & Milsom, C. V. Origins, evolution, and diversification of zooplankton. Annu. Rev. Ecol. Syst. 31, 293–313 (2000).
Google Scholar
Young, G. A. & Hagadorn, J. W. The fossil record of cnidarian medusae. Palaeoworld 19, 212–221 (2010).
Google Scholar
Technau, U. & Steele, R. E. Evolutionary crossroads in developmental biology: Cnidaria. Development 138, 1447 (2012).
Google Scholar
Hoegh-Guldberg, O., Poloczanska, E. S., Skirving, W. & Dove, S. Coral reef ecosystems under climate change and ocean acidification. Front. Mar. Sci. https://doi.org/10.3389/fmars.2017.00158 (2017).
Google Scholar
Hagadorn, J. W., Dott, R. H. & Damrow, D. Stranded on a Late Cambrian shoreline: Medusae from central Wisconsin. Geology 30, 147–150 (2002).
Google Scholar
Boero, F. Review of jellyfish blooms in the Mediterranean and Black Sea. Studies and Reviews. General Fisheries Commission for the Mediterranean, Vol. 92 (FAO, Rome, 2013).
Brotz, L., Cheung, W., Kleisner, K., Pakhomov, E. & Pauly, D. Increasing jellyfish populations: Trends in large marine ecosystems. Hydrobiologia 690, 3–20 (2012).
Google Scholar
Condon, R. H. et al. Recurrent jellyfish blooms are a consequence of global oscillations. Proc. Natl. Acad. Sci. 110, 1000–1005. https://doi.org/10.1073/pnas.1210920110 (2013).
Google Scholar
Arai, M. Pelagic coelenterates and eutrophication: A review. Hydrobiologia 451, 69–87. https://doi.org/10.1023/A:1011840123140 (2001).
Google Scholar
Purcell, J. E., Malej, A. & Benović, A. in Ecosystems at the Land-Sea Margin: Drainage Basin to Coastal Seas Vol. 55 Coastal and Estuarine Studies Ch. 8, 241–263 (American Geophysical Union, 1999).
Lynam, C. P. et al. Have jellyfish in the Irish Sea benefited from climate change and overfishing?. Glob. Change Biol. 17, 767–782. https://doi.org/10.1111/j.1365-2486.2010.02352.x (2011).
Google Scholar
Richardson, A. J., Bakun, A., Hays, G. C. & Gibbons, M. J. The jellyfish joyride: Causes, consequences and management responses to a more gelatinous future. Trends Ecol. Evol. 24, 312–322 (2009).
Google Scholar
Lucas, C. H., Graham, W. M. & Widmer, C. Jellyfish life histories: Role of polyps in forming and maintaining scyphomedusa populations. Adv. Mar. Biol. 63, 133–196 (2012).
Google Scholar
Helm, R. R. Evolution and development of scyphozoan jellyfish. Biol. Rev. 93, 1228–1250 (2018).
Google Scholar
Jarms, G. & Morandini, A. C. World Atlas of Jellyfish (Dölling und Galitz Verlag, Germany, 2019).
Piraino, S., Boero, F., Aeschbach, B. & Schmid, V. Reversing the life cycle: medusae transforming into polyps and cell transdifferentiation in Turritopsis nutricula (Cnidaria, Hydrozoa). Biol. Bull. 180, 302–312 (1996).
Google Scholar
De Vito, D., Piraino, S., Schmich, J., Bouillon, J. & Boero, F. Evidence of reverse development in Leptomedusae (Cnidaria, Hydrozoa): the case of Laodicea undulata (Forbes and Goodsir 1851). Mar. Biol. 149, 339–346 (2006).
Google Scholar
He, J., Zheng, L., Zhang, W. & Lin, Y. Life cycle reversal in Aurelia sp.1 (Cnidaria, Scyphozoa). PLoS One 10, e0145314 (2015).
Google Scholar
Sandrini, L. R. & Avian, M. Biological cycle of Pelagia noctiluca: Morphological aspects of the development from planula to ephyra. Mar. Biol. 74, 169–174. https://doi.org/10.1007/BF00413920 (1983).
Google Scholar
Jarms, G., Båmstedt, U., Tiemann, H., Martinussen, M. B. & Fosså, J. H. The holopelagic life cycle of the deep-sea medusa Periphylla periphylla (Scyphozoa, Coronatae). Sarsia 84, 55–65 (1999).
Google Scholar
Dawson, M. N. & Hamner, W. M. A character-based analysis of the evolution of jellyfish blooms: Adaptation and exaptation. Hydrobiologia 616, 193–215. https://doi.org/10.1007/s10750-008-9591-x (2009).
Google Scholar
Ceh, J., Gonzalez, J., Pacheco, A. S. & Riascos, J. M. The elusive life cycle of scyphozoan jellyfish—Metagenesis revisited. Sci. Rep. 5, 12037. https://doi.org/10.1038/srep12037. http://www.nature.com/srep/2015/150708/srep12037/abs/srep12037.html#supplementary-information (2015).
Campos, L., Gonzállez, K. & Ceh, J. First report of a precocious form of strobilation in a jellyfish, the South American Pacific sea nettle Chrysaora plocamia. Mar. Biodivers. 50, 85 (2020).
Google Scholar
Henroth, L. & Grondähl, F. On the biology of Aurelia aurita (L.) 1. Release and growth of Aurelia aurita (L.) ephyrae in the Gullmar Fjiord, western Sweden, 1982–83. Ophelia 22, 189–199 (1983).
Google Scholar
Hirai, E. On the developmental cycles of Aurelia aurita and Dactylometra pacifica. Bull. Mar. Biol. Stn Asamushi IX, 81 (1958).
Kakinuma, Y. An experimental study of the life cycle and organ differentiation of Aurelia aurita Lamarck. Bull. Mar. Biol. Stn. Asamushi XV, 101–113 (1975).
Yasuda, T. Ecological studies on the jelly-fish, Aurelia aurita, in Urazoko Bay, Fukui Prefecture-XI. An observation on ephyra formation. Publ. Seto Mar. Biol. Lab. XXII, 75–80 (1975).
Google Scholar
Suzuki, K. S. et al. Seasonal alternation of the ontogenetic development of the moon jellyfish Aurelia coerulea in Maizuru Bay, Japan. PLoS One 14, e0225513. https://doi.org/10.1371/journal.pone.0225513 (2019).
Google Scholar
Avian, M. In Workshop on Jellyfish in the Mediterranean Sea Vol. 2 (eds Rottini Sandrini, L. & Avian, M.) 47–59 (Nova Thalassia, 1986).
Costello, J. et al. Project Meduza in the context of its historical time. Ann. Ser. Hist. Nat. 19, 1–18 (2009).
Margiotta, F. et al. Do plankton reflect the environmental quality status? The case of a post-industrial Mediterranean Bay. Mar. Environ. Res. 160, 104980 (2020).
Google Scholar
Schiariti, A. et al. Asexual reproduction strategies and blooming potential in Scyphozoa. Mar. Ecol. Prog. Ser. 510, 241–253 (2014).
Google Scholar
Yasuda, T. Ecological studies on the jelly-fish, Aurelia aurita, in Urazoko Bay, Fukui Prefecture-IV. Monthly change in the bell-length composition and breeding season. Bull. Jpn. Soc. Sci. Fish. 37, 364–370 (1971).
Google Scholar
Suryan, R. M. et al. Environmental forcing on life history strategies: Evidence for multi-trophic level responses at ocean basin scales. Prog. Oceanogr. 81, 214–222 (2009).
Google Scholar
Dawson, M. N. Macro-morphological variation among cryptic species of the moon jellyfish, Aurelia (Cnidaria: Scyphozoa). Mar. Biol. 143, 369–379 (2003).
Google Scholar
Benović, A. et al. Ecological characteristics of the Mljet Island seawater lakes (South Adriatic Sea) with special reference to their resident population of medusae. Sci. Mar. 64, 197–206 (2000).
Google Scholar
Prieto, L., Astorga, D., Navarro, G. & Ruiz, J. Environmental control of phase transition and polyp survival of a massive-outbreaker jellyfish. PLoS One 5, e13793. https://doi.org/10.1371/journal.pone.0013793 (2010).
Google Scholar
Purcell, J. et al. Temperature effects on asexual reproduction rates of scyphozoan polyps from the NW Mediterranean Sea. Hydrobiologia 690, 169–180 (2012).
Google Scholar
Kikinger, R. Cotylorhiza tuberculata (Cnidaria: Scyphozoa)—Life history of a stationary population. PSZN Mar. Ecol. 13, 333–362 (1992).
Google Scholar
Djeghri, N., Pondaven, P., Stibor, H. & Dawson, M. N. Review of the diversity, traits, and ecology of zooxanthellate jellyfishes. Mar. Biol. 166, 147 (2019).
Google Scholar
Glynn, P. W. & Colgan, M. W. Sporadic disturbances in fluctuating coral reef environments: El Niño and coral reef development in the Eastern Pacific. Am. Zool. 32, 707–718. https://doi.org/10.1093/icb/32.6.707 (1999).
Google Scholar
Source: Ecology - nature.com