in

“Indirect development” increases reproductive plasticity and contributes to the success of scyphozoan jellyfish in the oceans

  • 1.

    Cartwright, P. et al. Exceptionally preserved jellyfishes from the middle Cambrian. PLoS One 2, e1121 (2007).

    ADS 
    Article 

    Google Scholar 

  • 2.

    Walcott, C. D. Cambrian Geology and Paleontology II: No. 3—Middle Cambrian Holothurians and Medusae Vol. 3 (Smithsonian Institution, 1911).

    Google Scholar 

  • 3.

    Willoughby, R. H. & Robison, R. A. Medusoids from the Middle Cambrian of Utah. J. Paleontol. 53, 494–500 (1979).

    Google Scholar 

  • 4.

    Rigby, S. & Milsom, C. V. Origins, evolution, and diversification of zooplankton. Annu. Rev. Ecol. Syst. 31, 293–313 (2000).

    Article 

    Google Scholar 

  • 5.

    Young, G. A. & Hagadorn, J. W. The fossil record of cnidarian medusae. Palaeoworld 19, 212–221 (2010).

    Article 

    Google Scholar 

  • 6.

    Technau, U. & Steele, R. E. Evolutionary crossroads in developmental biology: Cnidaria. Development 138, 1447 (2012).

    Article 

    Google Scholar 

  • 7.

    Hoegh-Guldberg, O., Poloczanska, E. S., Skirving, W. & Dove, S. Coral reef ecosystems under climate change and ocean acidification. Front. Mar. Sci. https://doi.org/10.3389/fmars.2017.00158 (2017).

    Article 

    Google Scholar 

  • 8.

    Hagadorn, J. W., Dott, R. H. & Damrow, D. Stranded on a Late Cambrian shoreline: Medusae from central Wisconsin. Geology 30, 147–150 (2002).

    ADS 
    Article 

    Google Scholar 

  • 9.

    Boero, F. Review of jellyfish blooms in the Mediterranean and Black Sea. Studies and Reviews. General Fisheries Commission for the Mediterranean, Vol. 92 (FAO, Rome, 2013).

  • 10.

    Brotz, L., Cheung, W., Kleisner, K., Pakhomov, E. & Pauly, D. Increasing jellyfish populations: Trends in large marine ecosystems. Hydrobiologia 690, 3–20 (2012).

    Article 

    Google Scholar 

  • 11.

    Condon, R. H. et al. Recurrent jellyfish blooms are a consequence of global oscillations. Proc. Natl. Acad. Sci. 110, 1000–1005. https://doi.org/10.1073/pnas.1210920110 (2013).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • 12.

    Arai, M. Pelagic coelenterates and eutrophication: A review. Hydrobiologia 451, 69–87. https://doi.org/10.1023/A:1011840123140 (2001).

    Article 

    Google Scholar 

  • 13.

    Purcell, J. E., Malej, A. & Benović, A. in Ecosystems at the Land-Sea Margin: Drainage Basin to Coastal Seas Vol. 55 Coastal and Estuarine Studies Ch. 8, 241–263 (American Geophysical Union, 1999).

  • 14.

    Lynam, C. P. et al. Have jellyfish in the Irish Sea benefited from climate change and overfishing?. Glob. Change Biol. 17, 767–782. https://doi.org/10.1111/j.1365-2486.2010.02352.x (2011).

    ADS 
    Article 

    Google Scholar 

  • 15.

    Richardson, A. J., Bakun, A., Hays, G. C. & Gibbons, M. J. The jellyfish joyride: Causes, consequences and management responses to a more gelatinous future. Trends Ecol. Evol. 24, 312–322 (2009).

    Article 

    Google Scholar 

  • 16.

    Lucas, C. H., Graham, W. M. & Widmer, C. Jellyfish life histories: Role of polyps in forming and maintaining scyphomedusa populations. Adv. Mar. Biol. 63, 133–196 (2012).

    Article 

    Google Scholar 

  • 17.

    Helm, R. R. Evolution and development of scyphozoan jellyfish. Biol. Rev. 93, 1228–1250 (2018).

    Article 

    Google Scholar 

  • 18.

    Jarms, G. & Morandini, A. C. World Atlas of Jellyfish (Dölling und Galitz Verlag, Germany, 2019).

    Google Scholar 

  • 19.

    Piraino, S., Boero, F., Aeschbach, B. & Schmid, V. Reversing the life cycle: medusae transforming into polyps and cell transdifferentiation in Turritopsis nutricula (Cnidaria, Hydrozoa). Biol. Bull. 180, 302–312 (1996).

    Article 

    Google Scholar 

  • 20.

    De Vito, D., Piraino, S., Schmich, J., Bouillon, J. & Boero, F. Evidence of reverse development in Leptomedusae (Cnidaria, Hydrozoa): the case of Laodicea undulata (Forbes and Goodsir 1851). Mar. Biol. 149, 339–346 (2006).

    Article 

    Google Scholar 

  • 21.

    He, J., Zheng, L., Zhang, W. & Lin, Y. Life cycle reversal in Aurelia sp.1 (Cnidaria, Scyphozoa). PLoS One 10, e0145314 (2015).

    Article 

    Google Scholar 

  • 22.

    Sandrini, L. R. & Avian, M. Biological cycle of Pelagia noctiluca: Morphological aspects of the development from planula to ephyra. Mar. Biol. 74, 169–174. https://doi.org/10.1007/BF00413920 (1983).

    Article 

    Google Scholar 

  • 23.

    Jarms, G., Båmstedt, U., Tiemann, H., Martinussen, M. B. & Fosså, J. H. The holopelagic life cycle of the deep-sea medusa Periphylla periphylla (Scyphozoa, Coronatae). Sarsia 84, 55–65 (1999).

    Article 

    Google Scholar 

  • 24.

    Dawson, M. N. & Hamner, W. M. A character-based analysis of the evolution of jellyfish blooms: Adaptation and exaptation. Hydrobiologia 616, 193–215. https://doi.org/10.1007/s10750-008-9591-x (2009).

    Article 

    Google Scholar 

  • 25.

    Ceh, J., Gonzalez, J., Pacheco, A. S. & Riascos, J. M. The elusive life cycle of scyphozoan jellyfish—Metagenesis revisited. Sci. Rep. 5, 12037. https://doi.org/10.1038/srep12037. http://www.nature.com/srep/2015/150708/srep12037/abs/srep12037.html#supplementary-information (2015).

  • 26.

    Campos, L., Gonzállez, K. & Ceh, J. First report of a precocious form of strobilation in a jellyfish, the South American Pacific sea nettle Chrysaora plocamia. Mar. Biodivers. 50, 85 (2020).

    Article 

    Google Scholar 

  • 27.

    Henroth, L. & Grondähl, F. On the biology of Aurelia aurita (L.) 1. Release and growth of Aurelia aurita (L.) ephyrae in the Gullmar Fjiord, western Sweden, 1982–83. Ophelia 22, 189–199 (1983).

    Article 

    Google Scholar 

  • 28.

    Hirai, E. On the developmental cycles of Aurelia aurita and Dactylometra pacifica. Bull. Mar. Biol. Stn Asamushi IX, 81 (1958).

    Google Scholar 

  • 29.

    Kakinuma, Y. An experimental study of the life cycle and organ differentiation of Aurelia aurita Lamarck. Bull. Mar. Biol. Stn. Asamushi XV, 101–113 (1975).

    Google Scholar 

  • 30.

    Yasuda, T. Ecological studies on the jelly-fish, Aurelia aurita, in Urazoko Bay, Fukui Prefecture-XI. An observation on ephyra formation. Publ. Seto Mar. Biol. Lab. XXII, 75–80 (1975).

    Article 

    Google Scholar 

  • 31.

    Suzuki, K. S. et al. Seasonal alternation of the ontogenetic development of the moon jellyfish Aurelia coerulea in Maizuru Bay, Japan. PLoS One 14, e0225513. https://doi.org/10.1371/journal.pone.0225513 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    Avian, M. In Workshop on Jellyfish in the Mediterranean Sea Vol. 2 (eds Rottini Sandrini, L. & Avian, M.) 47–59 (Nova Thalassia, 1986).

    Google Scholar 

  • 33.

    Costello, J. et al. Project Meduza in the context of its historical time. Ann. Ser. Hist. Nat. 19, 1–18 (2009).

    Google Scholar 

  • 34.

    Margiotta, F. et al. Do plankton reflect the environmental quality status? The case of a post-industrial Mediterranean Bay. Mar. Environ. Res. 160, 104980 (2020).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Schiariti, A. et al. Asexual reproduction strategies and blooming potential in Scyphozoa. Mar. Ecol. Prog. Ser. 510, 241–253 (2014).

    ADS 
    Article 

    Google Scholar 

  • 36.

    Yasuda, T. Ecological studies on the jelly-fish, Aurelia aurita, in Urazoko Bay, Fukui Prefecture-IV. Monthly change in the bell-length composition and breeding season. Bull. Jpn. Soc. Sci. Fish. 37, 364–370 (1971).

    Article 

    Google Scholar 

  • 37.

    Suryan, R. M. et al. Environmental forcing on life history strategies: Evidence for multi-trophic level responses at ocean basin scales. Prog. Oceanogr. 81, 214–222 (2009).

    ADS 
    Article 

    Google Scholar 

  • 38.

    Dawson, M. N. Macro-morphological variation among cryptic species of the moon jellyfish, Aurelia (Cnidaria: Scyphozoa). Mar. Biol. 143, 369–379 (2003).

    Article 

    Google Scholar 

  • 39.

    Benović, A. et al. Ecological characteristics of the Mljet Island seawater lakes (South Adriatic Sea) with special reference to their resident population of medusae. Sci. Mar. 64, 197–206 (2000).

    Article 

    Google Scholar 

  • 40.

    Prieto, L., Astorga, D., Navarro, G. & Ruiz, J. Environmental control of phase transition and polyp survival of a massive-outbreaker jellyfish. PLoS One 5, e13793. https://doi.org/10.1371/journal.pone.0013793 (2010).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 41.

    Purcell, J. et al. Temperature effects on asexual reproduction rates of scyphozoan polyps from the NW Mediterranean Sea. Hydrobiologia 690, 169–180 (2012).

    CAS 
    Article 

    Google Scholar 

  • 42.

    Kikinger, R. Cotylorhiza tuberculata (Cnidaria: Scyphozoa)—Life history of a stationary population. PSZN Mar. Ecol. 13, 333–362 (1992).

    Article 

    Google Scholar 

  • 43.

    Djeghri, N., Pondaven, P., Stibor, H. & Dawson, M. N. Review of the diversity, traits, and ecology of zooxanthellate jellyfishes. Mar. Biol. 166, 147 (2019).

    Article 

    Google Scholar 

  • 44.

    Glynn, P. W. & Colgan, M. W. Sporadic disturbances in fluctuating coral reef environments: El Niño and coral reef development in the Eastern Pacific. Am. Zool. 32, 707–718. https://doi.org/10.1093/icb/32.6.707 (1999).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Genome-wide analysis reveals associations between climate and regional patterns of adaptive divergence and dispersal in American pikas

    Crossing disciplines, adding fresh eyes to nuclear engineering