in

Individual and population dietary specialization decline in fin whales during a period of ecosystem shift

  • 1.

    Hutchinson, G. E. Concluding remarks. Cold Spring Harb. Symp. Quant. Biol. 22, 415–427 (1957).

    Article 

    Google Scholar 

  • 2.

    Bolnick, D. I. et al. The ecology of individuals: Incidence and implications of individual specialization. Am. Nat. 161, 1–28 (2003).

    MathSciNet 
    PubMed 
    Article 

    Google Scholar 

  • 3.

    Araújo, M. S., Bolnick, D. I. & Layman, C. A. The ecological causes of individual specialisation. Ecology 14, 948–958 (2011).

    Google Scholar 

  • 4.

    Kassen, R. The experimental evolution of specialists, generalists, and the maintenance of diversity. J. Evol. Biol. 15, 173–190 (2002).

    Article 

    Google Scholar 

  • 5.

    Clavel, J., Julliard, R. & Devictor, V. Worldwide decline of specialist species: Toward a global functional homogenization?. Front. Ecol. Environ. 9, 222–228 (2011).

    Article 

    Google Scholar 

  • 6.

    Svanbäck, R. & Bolnick, D. I. Intraspecific competition drives increased resource use diversity within a natural population. Proc. R. Soc. B Biol. Sci. 274, 839–844 (2007).

    Article 

    Google Scholar 

  • 7.

    Tinker, M. et al. Structure and mechanism of diet specialization: Testing models of individual variation in resource use with sea otters. Ecology 15, 475–483 (2012).

    Google Scholar 

  • 8.

    Newsome, S. D. et al. The interaction of intraspecific competition and habitat on individual diet specialization: A near range-wide examination of sea otters. Oecologia 178, 45–59 (2015).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • 9.

    Layman, C. A., Newsome, S. D. & Crawford, T. G. Individual-level niche specialization within populations: Emerging areas of study. Oecologia 178, 1–4 (2015).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • 10.

    Moore, S. E., Haug, T., Víkingsson, G. A. & Stenson, G. B. Baleen whale ecology in arctic and subarctic seas in an era of rapid habitat alteration. Prog. Oceanogr. 176, 102–118 (2019).

    Article 

    Google Scholar 

  • 11.

    Møller, E. F. & Nielsen, T. G. Borealization of Arctic zooplankton – Smaller and less fat zooplankton species in Disko Bay, Western Greenland. Limnol. Oceanogr. 65, 1175–1188 (2020).

    ADS 
    Article 

    Google Scholar 

  • 12.

    COSEWIC. COSEWIC Assessment and Status Report on the Fin Whale Balaenoptera physalus, Atlantic Population and Pacific Population, in Canada. xv + 72 (COSEWIC, 2019).

  • 13.

    Kawamura, A. A review of food of balaenopterid whales. Sci. Rep. Whales Res. Inst. 32, 155–197 (1980).

    Google Scholar 

  • 14.

    Baumgartner, M. F. & Mate, B. R. Summertime foraging ecology of North Atlantic right whales. Mar. Ecol. Prog. Ser. 264, 123–135 (2003).

    ADS 
    Article 

    Google Scholar 

  • 15.

    Silva, M. A., Prieto, R., Jonsen, I., Baumgartner, M. F. & Santos, R. S. North Atlantic blue and fin whales suspend their spring migration to forage in middle latitudes: building up energy reserves for the journey?. PLoS ONE 8, e76507. https://doi.org/10.1371/journal.pone.0076507 (2013).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 16.

    Gavrilchuk, K. et al. Trophic niche partitioning among sympatric baleen whale species following the collapse of groundfish stocks in the Northwest Atlantic. Mar. Ecol. Prog. Ser. 497, 285–301 (2014).

    ADS 
    Article 

    Google Scholar 

  • 17.

    Aguilar, A. & García-Vernet, R. Fin whale. in Encyclopedia of Marine Mammals (eds. Würsig, B., Thewissen, J. G. M., Kovacs, K. M.) 368–371 (Elsevier, 2018).

  • 18.

    Silva, M. A. et al. A stable isotopes reveal winter feeding in different habitats in blue, fin and sei whales migrating through the Azores. R. Soc. Open Sci. 6, 181800. https://doi.org/10.1098/rsos.181800 (2019).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    Savenkoff, C. et al. Changes in the northern Gulf of St Lawrence ecosystem estimated by inverse modelling: Evidence of a fishery-induced regime shift?. Est. Coast. Shelf Sci. 73, 711–724 (2007).

    ADS 
    Article 

    Google Scholar 

  • 20.

    Galbraith, P. S. et al. Physical oceanographic conditions in the gulf of St. Lawrence during 2019. Can. Sci. Adv. Sec. Res. Doc. 2020/043, iv + 9 (2020).

    Google Scholar 

  • 21.

    Myers, R. A. & Worm, B. Extinction, survival or recovery of large predatory fishes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360, 13–20 (2005).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 22.

    Plourde, S. et al. Ecosystem perspective on changes and anomalies in the Gulf of St. Lawrence: A context in support of the management of the St. Lawrence beluga whale population. Can. Sci. Adv. Sec. Res. Doc. 2013/129, v + 29 (2014).

    Google Scholar 

  • 23.

    Hammill, M. O., Stenson, G. B., Doniol-Valcroze, T. & Mosnier, A. Conservation of northwest Atlantic harp seals: Past success, future uncertainty?. Biol. Conserv. 192, 181–191 (2015).

    Article 

    Google Scholar 

  • 24.

    Stenson, G. B., Haug, T. & Hammill, M. O. Harp seals: Monitors of change in differing ecosystems. Front. Mar. Sci. 7, 738. https://doi.org/10.3389/fmars.2020.569258 (2020).

    Article 

    Google Scholar 

  • 25.

    Comtois, S., Savenkoff, C., Bourassa, M. N., Brêthes, J. C. & Sears, R. Regional distribution and abundance of blue and humpback whales in the Gulf of St. Lawrence. Can. Tech. Rep. Fish. Aquat. Sci. 2877, viii+8 (2010).

    Google Scholar 

  • 26.

    Phillips, D. L. et al. Best practices for use of stable isotope mixing models in food-web studies. Can. J. Zool. 835, 823–835 (2014).

    Article 

    Google Scholar 

  • 27.

    Iverson, S. J., Field, C., Don Bowen, W. & Blanchard, W. Quantitative fatty acid signature analysis: A new method of estimating predator diets. Ecol. Monogr. 74, 211–235 (2004).

    Article 

    Google Scholar 

  • 28.

    Arregui, M., Borrell, A., Víkingsson, G., Ólafsdóttir, D. & Aguilar, A. Stable isotope analysis of fecal material provides insight into the diet of fin whales. Mar. Mamm. Sci. 34, 1059–1069 (2018).

    CAS 
    Article 

    Google Scholar 

  • 29.

    Bourdages, H. et al. Preliminary results from the ecosystemic survey in August 2019 in the Estuary and northern Gulf of St. Lawrence. Can. Sci. Adv. Sec. Res. Doc. 2020/009, iv+93 (2020).

    Google Scholar 

  • 30.

    Lesage, V., Lair, S., Turgeon, S. & Béland, P. Diet of St. Lawrence Estuary Beluga (Delphinapterus leucas) in a changing ecosystem. Can. Field Nat. 134, 21–35 (2020).

    Article 

    Google Scholar 

  • 31.

    Aubin, D. S., Smith, T. G. & Geraci, J. R. Seasonal epidermal molt in beluga whales, Delphinapterus leucas. Can. J. Zool. 68, 359–367 (1990).

    Article 

    Google Scholar 

  • 32.

    Busquets-Vass, G. et al. Estimating blue whale skin isotopic incorporation rates and baleen growth rates: Implications for assessing diet and movement patterns in mysticetes. PLoS ONE 12, e0177880. https://doi.org/10.1371/journal.pone.0177880 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 33.

    Vighi, M., Borrell, A. & Aguilar, A. Stable isotope analysis and fin whale subpopulation structure in the eastern North Atlantic. Mar. Mam. Sci. 32, 535–551 (2016).

    Article 

    Google Scholar 

  • 34.

    Ramp, C., Delarue, J., Bérubé, M., Hammond, P. S. & Sears, R. Fin whale survival and abundance in the Gulf of St. Lawrence, Canada. Endanger. Species Res. 23, 125–132 (2014).

    Article 

    Google Scholar 

  • 35.

    Lesage, V., Hammill, M. O. & Kovacs, K. M. Marine mammals and the community structure of the Estuary and Gulf of St. Lawrence, Canada: Evidence from stable isotope analysis. Mar. Ecol. Prog. Ser. 210, 203–221. https://doi.org/10.3354/meps210203 (2001).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 36.

    Ryan, C. et al. Prey preferences of sympatric fin (Balaenoptera physalus) and humpback (Megaptera novaeangliae) whales revealed by stable isotope mixing models. Mar. Mamm. Sci. 30, 242–258 (2014).

    CAS 
    Article 

    Google Scholar 

  • 37.

    Flinn, R. D., Trites, A. W., Gregr, E. J. & Perry, R. I. Diets of fin, sei, and sperm whales in British Columbia: An analysis of commercial whaling records, 1963–1967. Mar. Mamm. Sci. 18, 663–679 (2002).

    Article 

    Google Scholar 

  • 38.

    Bentaleb, I. et al. Foraging ecology of Mediterranean fin whales in a changing environment elucidated by satellite tracking and baleen plate stable isotopes. Mar. Ecol. Prog. Ser. 438, 285–302 (2011).

    ADS 
    Article 

    Google Scholar 

  • 39.

    Bolnick, D. I. & Fitzpatrick, B. M. Sympatric speciation: Models and empirical evidence. Annu. Rev. Ecol. Evol. Syst. 38, 459–487 (2007).

    Article 

    Google Scholar 

  • 40.

    Goldbogen, J. A. et al. Underwater acrobatics by the world’s largest predator: 360 rolling manoeuvres by lunge-feeding blue whales. Biol. Lett. 9, 20120986. https://doi.org/10.1098/rsbl.2012.0986 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 41.

    Abrahms, B. et al. Memory and resource tracking drive blue whale migrations. Proc. Natl. Acad. Sci. 116, 5582–5587 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 42.

    Lesmerises, F., Johnson, C. J. & St-Laurent, M. H. Landscape knowledge is an important driver of the fission dynamics of an alpine ungulate. Anim. Behav. 140, 39–47 (2018).

    Article 

    Google Scholar 

  • 43.

    Serres, A. & Delfour, F. Social behaviors modulate bottlenose dolphins (Tursiops truncatus) breathing rate. Anim. Cogn. 6, 127–140 (2019).

    Google Scholar 

  • 44.

    Goldbogen, J. A. et al. Kinematics of foraging dives and lunge-feeding in fin whales. J. Exp. Biol. 209, 1231–1244 (2006).

    PubMed 
    Article 

    Google Scholar 

  • 45.

    Potvin, J., Goldbogen, J. A. & Shadwick, R. E. Metabolic expenditures of lunge feeding rorquals across scale: Implications for the evolution of filter feeding and the limits to maximum body size. PLoS ONE 7, e44854. https://doi.org/10.1371/journal.pone.0044854 (2012).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 46.

    Sexton, J. P., McIntyre, P. J., Angert, A. L. & Rice, K. J. Evolution and ecology of species range limits. Ann. Rev. Ecol. Evol. Syst. 40, 415–436 (2009).

    Article 

    Google Scholar 

  • 47.

    Schleimer, A. et al. Decline in abundance and apparent survival rates of fin whales (Balaenoptera physalus) in the northern Gulf of St. Lawrence. Ecol. Evol. 9, 4231–4244 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 48.

    Lesage, V. et al. Stable isotopes and trace elements as indicators of diet and habitat use in cetaceans: predicting errors related to preservation, lipid extraction, and lipid normalization. Mar. Ecol. Prog. Ser. 419, 249–265 (2010).

    ADS 
    Article 

    Google Scholar 

  • 49.

    Plourde, S., Winkler, G., Joly, P., St-Pierre, J. F. & Starr, M. Long-term seasonal and interannual variations of krill spawning in the lower St. Lawrence estuary, Canada, 1979–2009. J. Plankton Res. 33, 703–714 (2011).

    Article 

    Google Scholar 

  • 50.

    Plourde, S. et al. Daytime depth and thermal habitat of two sympatric krill species in response to surface salinity variability in the Gulf of St Lawrence, eastern Canada. ICES J. Mar. Sci. 71, 272–281 (2014).

    Article 

    Google Scholar 

  • 51.

    Cabrol, J. et al. Seasonal and large-scale spatial variability of the energy reserves and the feeding selectivity of Meganyctiphanes norvegica and Thysanoessa inermis in a Subarctic environment. Prog. Oceanogr. 179, 102203 (2019).

    Article 

    Google Scholar 

  • 52.

    Cabrol, J. et al. Functional feeding response of Nordic and Arctic krill on natural phytoplankton and zooplankton. J. Plankton Res. 42, 239–252 (2020).

    Article 

    Google Scholar 

  • 53.

    Cabrol, J. et al. Trophic niche partitioning of dominant North-Atlantic krill species, Meganyctiphanes norvegica, Thysanoessa inermis, and T. raschii. Limnol. Oceanogr. 64, 165–181 (2019).

    ADS 
    Article 

    Google Scholar 

  • 54.

    Guilpin, M. et al. Repeated vessel interactions and climate-or fishery-driven changes in prey density limit energy acquisition by foraging blue whales. Front. Mar. Sci. 7, 626. https://doi.org/10.3389/fmars.2020.00626 (2020).

    Article 

    Google Scholar 

  • 55.

    Guilpin, M. Étude des interactions bioénergétiques entre le rorqual bleu Balaenoptera musculus et le krill dans l’estuaire et le golfe du Saint-Laurent. Doctoral Thesis. (Université du Québec à Rimouski, 2020).

  • 56.

    MacArthur, R. H. & Pianka, E. R. On optimal use of a patchy environment. Am. Nat. 100, 603–609 (1966).

    Article 

    Google Scholar 

  • 57.

    Schleimer, A. et al. Spatio-temporal patterns in fin whale Balaenoptera physalus habitat use in the northern Gulf of St. Lawrence. Mar. Ecol. Prog. Ser. 623, 221–234 (2019).

    ADS 
    Article 

    Google Scholar 

  • 58.

    Bernier-Graveline, A. et al. Lipid metabolites as indicators of body condition in highly contaminant-exposed belugas from the endangered St. Lawrence Estuary population (Canada). Environ. Res. 192, 110272. https://doi.org/10.1016/j.envres.2020.110272 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 59.

    Kershaw, J. L. et al. Declining reproductive success in the Gulf of St Lawrence’s humpback whales (Megaptera novaeangliae) reflects ecosystem shifts on their feeding grounds. Glob. Change Biol. 10, 1–15. https://doi.org/10.1111/gcb.15466 (2020).

    Article 

    Google Scholar 

  • 60.

    Mosnier, A. & Gosselin, J.-F. Seasonal distribution and concentration of four baleen whale species in the St. Lawrence Estuary based on 22 years of DFO observation data. Can. Sci. Adv. Sec. Res. Doc. 2020/053, iv+119 (2020).

    Google Scholar 

  • 61.

    Gowans, S., Simard, P., Giard, J., Vashro, C. & Sears, R. Photographic identification of fin whales (Balaenoptera physalus) off the Atlantic coast of Nova Scotia, Canada. Mar. Mamm. Sci. 21, 323–326 (2005).

    Article 

    Google Scholar 

  • 62.

    Bérubé, M. & Palsbøll, P. Identification of sex in cetaceans by multiplexing with three ZFX and ZFY specific primers. Mol. Ecol. 5, 283–287 (1996).

    PubMed 
    Article 

    Google Scholar 

  • 63.

    Williams, R. et al. Evidence for density-dependent changes in body condition and pregnancy rate of North Atlantic fin whales over four decades of varying environmental conditions. ICES J. Mar. Sci. 70, 1273–1280 (2013).

    Article 

    Google Scholar 

  • 64.

    Lockyer, C. Body fat condition in Northeast Atlantic fin whales, Balaenoptera physalus, and its relationship with reproduction and food resource. Can. J. Fish Aquat. Sci. 43, 142–147 (1986).

    Article 

    Google Scholar 

  • 65.

    Ryan, C. et al. Accounting for the effects of lipids in stable isotope (δ13C and δ15N values) analysis of skin and blubber of balaenopterid whales. Rapid Commun. Mass Spectrom. 26, 2745–2754 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 66.

    Elliott, K. H., Roth, J. D. & Crook, K. Lipid extraction techniques for stable isotope analysis and ecological assays. Method Mol. Biol. 1609, 9–24 (2017).

    CAS 
    Article 

    Google Scholar 

  • 67.

    Newsome, S. D., Chivers, S. J. & Berman Kowalewski, M. The influence of lipid-extraction and long-term DMSO preservation on carbon (δ13C) and nitrogen (δ15N) isotope values in cetacean skin. Mar. Mamm. Sci. 34, 277–293 (2018).

    CAS 
    Article 

    Google Scholar 

  • 68.

    Budge, S. M., Iverson, S. J. & Koopman, H. N. Studying trophic ecology in marine ecosystems using fatty acids: A primer on analysis and interpretation. Mar. Mamm. Sci. 22, 759–801 (2006).

    Article 

    Google Scholar 

  • 69.

    Iverson, S. J., Frost, K. J. & Lang, S. Fat content and fatty acid composition of forage fish and invertebrates in Prince William Sound, Alaska: Factors contributing to among and within species variability. Mar. Ecol. Prog. Ser. 241, 161–181 (2002).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 70.

    Lesage, V. Trends in the trophic ecology of St. Lawrence beluga (Delphinapterus leucas) over the period 1988–2012, based on stable isotope analysis. Can. Sci. Adv. Sec. Res. Doc. 2013/126, iv+26 (2014).

    Google Scholar 

  • 71.

    Anderson, M. J. & Walsh, D. C. PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: What null hypothesis are you testing?. Ecol. Monogr. 83, 557–574 (2013).

    Article 

    Google Scholar 

  • 72.

    Clarke, K. R. & Gorley, R. N. PRIMER v7: User Manual/Tutorial 3rd edn. (Primer-E Ltd, 2015).

    Google Scholar 

  • 73.

    Bates, D. M., Mäechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Soft. 67, 1–48 (2015).

    Article 

    Google Scholar 

  • 74.

    Wood, S. Mixed GAM computation vehicle with GCV/AIC/REML smoothness estimation and GAMMs by REML/PQL. in R Package Version 1–8 (2018).

  • 75.

    R Core Team. R: A Language and Environment for Statistical Computing. https://www.R-project.org (R Foundation for Statistical Computing, 2021).

  • 76.

    Stock, B. C. et al. Analyzing mixing systems using a new generation of Bayesian tracer mixing models. PeerJ 6, e5096. https://doi.org/10.7287/peerj.preprints.26884v1 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 77.

    Parnell, A., Inger, R., Bearhop, S. & Jackson, A. Source partitioning using stable isotopes: coping with too much variation. PLoS Biol. 5, e9672. https://doi.org/10.1371/journal.pone.0009672 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 78.

    Borrell, A., Abad-Oliva, N., Gómez-Campos, E., Giménez, J. & Aguilar, A. Discrimination of stable isotopes in fin whale tissues and application to diet assessment in cetaceans. Rapid Commun. Mass Spectrom. 26, 1596–1602 (2012).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 79.

    Gendron, D., Aguíñiga, S. & Carriquiry, J. D. d15N and d13C in skin biopsy samples: A note on their applicability for examining the relative trophic level in three rorqual species. J. Cetacean Res. Manag. 3, 41–44 (2001).

    Google Scholar 

  • 80.

    Giménez, J., Ramírez, F., Almunia, J., Forero, M. G. & de Stephanis, R. From the pool to the sea: Applicable isotope turnover rates and diet to skin discrimination factors for bottlenose dolphins (Tursiops truncatus). J. Exp. Mar. Biol. Ecol. 475, 54–61 (2016).

    Article 
    CAS 

    Google Scholar 

  • 81.

    Caut, S., Angulo, E. & Courchamp, F. Discrimination factors (Δ15N and Δ13C) in an omnivorous consumer: Effect of diet isotopic ratio. Funct. Ecol. 22, 255–263 (2008).

    Article 

    Google Scholar 

  • 82.

    Stock, B. C. & Semmens, B. X. Unifying error structures in commonly used biotracer mixing models. Ecology 97, 2562–2569 (2016).

    PubMed 
    Article 

    Google Scholar 

  • 83.

    Newsome, S. D., Yeakel, J. D., Wheatley, P. V. & Tinker, M. T. Tools for quantifying isotopic niche space and dietary variation at the individual and population level. J. Mammal. 93, 329–341 (2012).

    Article 

    Google Scholar 

  • 84.

    Nifong, J. C., Layman, C. A. & Silliman, B. R. Size, sex and individual-level behavior drive intrapopulation variation in cross-ecosystem foraging of a top-predator. J. Anim. Ecol. 84, 35–48 (2015).

    PubMed 
    Article 

    Google Scholar 

  • 85.

    Devries, M. S., Stock, B. C., Christy, J. H., Goldsmith, G. R. & Dawson, T. E. Specialized morphology corresponds to a generalist diet: Linking form and function in smashing mantis shrimp crustaceans. Oecologia 182, 429–442 (2016).

    ADS 
    PubMed 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Climate and sustainability classes expand at MIT

    The boiling crisis — and how to avoid it