Ceballos, G., Ehrlich, P. R. & Dirzo, R. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc. Natl Acad. Sci. USA 114, E6089–E6096 (2017).
Google Scholar
Pecl, G. T. et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).
Google Scholar
Newbold, T. Future effects of climate and land-use change on terrestrial vertebrate community diversity under different scenarios. Proc. R. Soc. B: Biol. Sci. 285, 20180792 (2018).
Google Scholar
IPBES. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services. https://zenodo.org/record/3553579#.XxWzvZ5Kh-U, https://doi.org/10.5281/zenodo.3553579 (2019).
Powers, R. P. & Jetz, W. Global habitat loss and extinction risk of terrestrial vertebrates under future land-use-change scenarios. Nat. Climate Change 1. https://doi.org/10.1038/s41558-019-0406-z (2019).
Kendall, B. E. & Fox, G. A. Variation among individuals and reduced demographic stochasticity. Conserv. Biol. 16, 109–116 (2002).
Google Scholar
Bonnot, T. W., Cox, W. A., Thompson, F. R. & Millspaugh, J. J. Threat of climate change on a songbird population through its impacts on breeding. Nat. Clim. Change 8, 718–722 (2018).
Google Scholar
Valladares, F. et al. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol. Lett. 17, 1351–1364 (2014).
Google Scholar
Bestion, E., Clobert, J. & Cote, J. Dispersal response to climate change: scaling down to intraspecific variation. Ecol. Lett. 18, 1226–1233 (2015).
Google Scholar
Oney, B., Reineking, B., O’Neill, G. & Kreyling, J. Intraspecific variation buffers projected climate change impacts on Pinus contorta. Ecol. Evol. 3, 437–449 (2013).
Google Scholar
Uriarte, M. & Menge, D. Variation between individuals fosters regional species coexistence. Ecol. Lett. 21, 1496–1504 (2018).
Google Scholar
Banitz, T. Spatially structured intraspecific trait variation can foster biodiversity in disturbed, heterogeneous environments. Oikos 128, 1478–1491 (2019).
Bailey, J. K. Incorporating eco-evolutionary dynamics into global change research. Funct. Ecol. 28, 3–4 (2014).
Google Scholar
Cianciaruso, M. V., Batalha, M. A., Gaston, K. J. & Petchey, O. L. Including intraspecific variability in functional diversity. Ecology 90, 81–89 (2009).
Google Scholar
Bolnick, D. I. et al. The ecology of individuals: incidence and implications of individual specialization. Am. Naturalist 161, 1–28 (2003).
Google Scholar
Bolnick, D. I., Svanbäck, R., Araújo, M. S. & Persson, L. Comparative support for the niche variation hypothesis that more generalized populations also are more heterogeneous. Proc. Natl Acad. Sci. USA 104, 10075–10079 (2007).
Google Scholar
Araújo, M. S., Bolnick, D. I. & Layman, C. A. The ecological causes of individual specialisation. Ecol. Lett. 14, 948–958 (2011).
Google Scholar
Van Valen, L. Morphological variation and width of ecological niche. Am. Naturalist 99, 377–390 (1965).
Google Scholar
Hocking, M. D., Darimont, C. T., Christie, K. S. & Reimchen, T. E. Niche variation in burying beetles (Nicrophorus spp.) associated with marine and terrestrial carrion. Can. J. Zool. 85, 437–442 (2007).
Google Scholar
Iguchi, K., Matsubara, N., Yodo, T. & Maekawa, K. Individual food niche specialization in stream-dwelling charr. Ichthyol. Res. 51, 321–326 (2004).
Google Scholar
Araújo, M. S., Bolnick, D. I., Machado, G., Giaretta, A. A. & dos Reis, S. F. Using δ13C stable isotopes to quantify individual-level diet variation. Oecologia 152, 643–654 (2007).
Google Scholar
Costa, G. C., Mesquita, D. O., Colli, G. R. & Vitt, L. J. Niche expansion and the niche variation hypothesis: does the degree of individual variation increase in depauperate assemblages? Am. Naturalist 172, 868–877 (2008).
Google Scholar
Sheppard, C. E. et al. Intragroup competition predicts individual foraging specialisation in a group-living mammal. Ecol. Lett. 21, 665–673 (2018).
Google Scholar
Pol, M. V. D., Brouwer, L., Ens, B. J., Oosterbeek, K. & Tinbergen, J. M. Fluctuating selection and the maintenance of individual and sex-specific diet specialization in free-living oystercatchers. Evolution 64, 836–851 (2010).
Google Scholar
Soberón, J. Grinnellian and Eltonian niches and geographic distributions of species. Ecol. Lett. 10, 1115–1123 (2007).
Google Scholar
Elith, J. & Leathwick, J. R. Species distribution models: ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677 (2009).
Google Scholar
Tingley, M. W., Monahan, W. B., Beissinger, S. R. & Moritz, C. Birds track their Grinnellian niche through a century of climate change. Proc. Natl Acad. Sci. USA 106, 19637–19643 (2009).
Google Scholar
Svanbäck, R. & Bolnick, D. I. Intraspecific competition affects the strength of individual specialization: an optimal diet theory method. Evol. Ecol. Res 7, 993–1012 (2005).
Sanz-Aguilar, A., Jovani, R., Melián, C. J., Pradel, R. & Tella, J. L. Multi-event capture–recapture analysis reveals individual foraging specialization in a generalist species. Ecology 96, 1650–1660 (2015).
Google Scholar
Orłowski, G. et al. Linking land cover satellite data with dietary variation and reproductive output in an opportunistic forager: Arable land use can boost an ontogenetic trophic bottleneck in the White Stork Ciconia ciconia. Sci. Total Environ. 646, 491–502 (2019).
Google Scholar
Teuschl, Y., Taborsky, B. & Taborsky, M. How do cuckoos find their hosts? The role of habitat imprinting. Anim. Behav. 56, 1425–1433 (1998).
Google Scholar
Davis, J. M. & Stamps, J. A. The effect of natal experience on habitat preferences. Trends Ecol. Evolution 19, 411–416 (2004).
Google Scholar
Fretwell, S. D. Populations in a Seasonal Environment (Princeton University Press, 1972).
Ingram, T., Costa‐Pereira, R. & Araújo, M. S. The dimensionality of individual niche variation. Ecology 99, 536–549 (2018).
Google Scholar
Abrahms, B. et al. Climate mediates the success of migration strategies in a marine predator. Ecol. Lett. 21, 63–71 (2018).
Google Scholar
Courbin, N. et al. Short-term prey field lability constrains individual specialisation in resource selection and foraging site fidelity in a marine predator. Ecol. Lett. 21, 1043–1054 (2018).
Google Scholar
Montgomery, R. A. et al. Evaluating the individuality of animal-habitat relationships. Ecol. Evol. 8, 10893–10901 (2018).
Google Scholar
Harris, S. M. et al. Personality predicts foraging site fidelity and trip repeatability in a marine predator. J. Anim. Ecol. 89, 68–79 (2020).
Google Scholar
Hutchinson Concluding remarks. Cold Spring Harb. Symp. Quant. Biol. 22, 415–427 (1957).
Google Scholar
Hutchinson, G. E. An Introduction to Population Ecology (Yale University Press, 1978).
Lele, S. R., Merrill, E. H., Keim, J. & Boyce, M. S. Selection, use, choice and occupancy: clarifying concepts in resource selection studies. J. Anim. Ecol. 82, 1183–1191 (2013).
Google Scholar
Leclerc, M. et al. Quantifying consistent individual differences in habitat selection. Oecologia 180, 697–705 (2016).
Google Scholar
Hertel, A. G. et al. Don’t poke the bear: using tracking data to quantify behavioural syndromes in elusive wildlife. Anim. Behav. 147, 91–104 (2019).
Google Scholar
Bastille‐Rousseau, G. & Wittemyer, G. Leveraging multidimensional heterogeneity in resource selection to define movement tactics of animals. Ecol. Lett. 22, 1417–1427 (2019).
Google Scholar
Costa‐Pereira, R., Rudolf, V. H. W., Souza, F. L. & Araújo, M. S. Drivers of individual niche variation in coexisting species. J. Anim. Ecol. 87, 1452–1464 (2018).
Bolnick, D. I., Yang, L. H., Fordyce, J. A., Davis, J. M. & Svanbäck, R. Measuring individual-level resource specialization. Ecology 83, 2936–2941 (2002).
Google Scholar
Araújo, M. S. et al. Nested diets: a novel pattern of individual-level resource use. Oikos 119, 81–88 (2010).
Google Scholar
Dunne, J. A. in: Ecological Networks: Linking Structure to Dynamics in Food Webs (eds Pascual, M. & Dunne, J. A.) 27–86 (Oxford University Press, 2006).
Hart, S. P., Schreiber, S. J. & Levine, J. M. How variation between individuals affects species coexistence. Ecol. Lett. https://doi.org/10.1111/ele.12618 (2016).
Bascompte, J., Jordano, P. & Olesen, J. M. Asymmetric coevolutionary networks facilitate biodiversity maintenance. Science 312, 431–433 (2006).
Google Scholar
Tinker, M. T. et al. Structure and mechanism of diet specialisation: testing models of individual variation in resource use with sea otters. Ecol. Lett. 15, 475–483 (2012).
Google Scholar
Dáttilo, W., Serio‐Silva, J. C., Chapman, C. A. & Rico‐Gray, V. Highly nested diets in intrapopulation monkey–resource food webs. Am. J. Primatol. 76, 670–678 (2014).
Google Scholar
Durell, S. E. A. L. V. D., Goss-Custard, J. D. & Caldow, R. W. G. Sex-related differences in diet and feeding method in the oystercatcher Haematopus ostralegus. J. Anim. Ecol. 62, 205–215 (1993).
Google Scholar
Bolnick, D. I. & Ballare, K. M. Resource diversity promotes among-individual diet variation, but not genomic diversity, in lake stickleback. Ecol. Lett. 23, 495–505 (2020).
Google Scholar
Nakagawa, S. & Schielzeth, H. Repeatability for Gaussian and non-Gaussian data: a practical guide for biologists. Biol. Rev. 85, 935–956 (2010).
Google Scholar
Fortin, D., Morris, D. W. & McLoughlin, P. D. Habitat selection and the evolution of specialists in heterogeneous environments. Isr. J. Ecol. Evolution 54, 311–328 (2008).
Google Scholar
Pires, M. M. et al. The nested assembly of individual-resource networks. J. Anim. Ecol. 80, 896–903 (2011).
Google Scholar
Cantor, M., Pires, M. M., Longo, G. O., Guimarães, P. R. & Setz, E. Z. F. Individual variation in resource use by opossums leading to nested fruit consumption. Oikos 122, 1085–1093 (2013).
Google Scholar
Santamaría, S. et al. Diet composition of the lizard Podarcis lilfordi (Lacertidae) on 2 small islands: an individual-resource network approach. Curr. Zool. 66, 39–49 (2020).
Google Scholar
Carrascal, L. M., Alonso, J. C. & Alonso, J. A. Aggregation size and foraging behaviour of white storks Ciconia ciconia during the breeding season. Ardea 78, 399–404 (1990).
Piper, W. H. In: Current Ornithology (eds. Nolan, V., Ketterson, E. D. & Thompson, C. F.) 125–187 https://doi.org/10.1007/978-1-4757-9915-6_4 (Springer US, 1997).
Marzlufi, J. M. & Heinrich, B. Foraging by common ravens in the presence and absence of territory holders: an experimental analysis of social foraging. Anim. Behav. 42, 755–770 (1991).
Google Scholar
van Overveld, T. et al. Food predictability and social status drive individual resource specializations in a territorial vulture. Sci. Rep. 8, 15155 (2018).
Google Scholar
Moore, S. A. & Bronte, C. R. Delineation of sympatric morphotypes of Lake Trout in Lake Superior. Trans. Am. Fish. Soc. 130, 1233–1240 (2001).
Google Scholar
Toscano, B. J., Gownaris, N. J., Heerhartz, S. M. & Monaco, C. J. Personality, foraging behavior and specialization: integrating behavioral and food web ecology at the individual level. Oecologia 182, 55–69 (2016).
Google Scholar
Johnson, D. H. The comparison of usage and availability measurements for evaluating resource preference. Ecology 61, 65–71 (1980).
Google Scholar
Bolnick, D. I. et al. Why intraspecific trait variation matters in community ecology. Trends Ecol. Evol. 26, 183–192 (2011).
Google Scholar
van Toor, M. L. et al. Flexibility of habitat use in novel environments: insights from a translocation experiment with lesser black-backed gulls. R. Soc. Open Sci. 4, 160164 (2017).
Google Scholar
Yates, K. L. et al. Outstanding challenges in the transferability of ecological models. Trends Ecol. Evolution 33, 790–802 (2018).
Google Scholar
ICARUS. Homepage—Animal Sensors Website. https://www.icarus.mpg.de/en (2020).
Toledo, S. et al. Cognitive map-based navigation in wild bats revealed by a new high-throughput tracking system. Science 369, 188–193 (2020).
Google Scholar
Wikelski, M. & Kays, R. Movebank: Archive, Analysis and Sharing of Animal Movement Data (World Wide Web Electronic Publication, 2014).
Leitão, P. J. & Santos, M. J. Improving models of species ecological niches: a remote sensing overview. Front. Ecol. Evol. 7, 9 (2019).
Oeser, J. et al. Habitat metrics based on multi-temporal Landsat imagery for mapping large mammal habitat. Remote Sens. Ecol. Conserv. 6, 52–69 (2020).
Google Scholar
Valerio, F. et al. Predicting microhabitat suitability for an endangered small mammal using sentinel-2 data. Remote Sens. 12, 562 (2020).
Google Scholar
Rotics, S. et al. The challenges of the first migration: movement and behaviour of juvenile vs. adult white storks with insights regarding juvenile mortality. J. Anim. Ecol. 85, 938–947 (2016).
Google Scholar
Werner, T. K. & Sherry, T. W. Behavioral feeding specialization in Pinaroloxias inornata, the “Darwin’s Finch” of Cocos Island, Costa Rica. Proc. Natl Acad. Sci. USA 84, 5506–5510 (1987).
Google Scholar
Zurell, D. et al. Home range size and resource use of breeding and non-breeding white storks along a land use gradient. Front. Ecol. Evol. 6, 1–11 (2018).
Bunnefeld, N. et al. A model-driven approach to quantify migration patterns: individual, regional and yearly differences. J. Anim. Ecol. 80, 466–476 (2011).
Google Scholar
Fleming, C. H. et al. Rigorous home range estimation with movement data: a new autocorrelated kernel density estimator. Ecology 96, 1182–1188 (2015).
Google Scholar
Calabrese, J. M., Fleming, C. H. & Gurarie, E. ctmm: an r package for analyzing animal relocation data as a continuous-time stochastic process. Methods Ecol. Evol. 7, 1124–1132 (2016).
Google Scholar
Thurfjell, H., Ciuti, S. & Boyce, M. S. Applications of step-selection functions in ecology and conservation. Mov. Ecol. 2, 4 (2014).
Blonder, B. et al. New approaches for delineating n-dimensional hypervolumes. Methods Ecol. Evolution 9, 305–319 (2018).
Google Scholar
Elliot, A., Garcia, E. F. J. & Boesman, P. F. D. In: Birds of the World (eds. del Hoyo, J. Elliott, A., Sargatal, J. Christie, D. A. & de Juana, E.) (Cornell Lab of Ornithology, 2020).
Gilbert, N. I. et al. Are white storks addicted to junk food? Impacts of landfill use on the movement and behaviour of resident white storks (Ciconia ciconia) from a partially migratory population. Mov. Ecol. 4, 1 (2016).
Google Scholar
Alonso, J. C., Alonso, J. A. & Carrascal, L. M. Habitat selection by foraging White Storks, Ciconia ciconia, during the breeding season. Can. J. Zool. https://doi.org/10.1139/z91-270 (2011).
Barbaro, L., Giffard, B., Charbonnier, Y., Halder, Ivan & Brockerhoff, E. G. Bird functional diversity enhances insectivory at forest edges: a transcontinental experiment. Diversity Distrib. 20, 149–159 (2014).
Google Scholar
Fisher, R. J. & Davis, S. K. From Wiens to Robel: a review of grassland-bird habitat selection. J. Wildl. Manag. 74, 265–273 (2010).
Google Scholar
Schielzeth, H. Simple means to improve the interpretability of regression coefficients. Methods Ecol. Evol. 1, 103–113 (2010).
Google Scholar
Gorelick, N. et al. Google earth engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).
Google Scholar
Manly, B. F. L., McDonald, L., Thomas, D., McDonald, T. L. & Erickson, W. P. Resource Selection by Animals: Statistical Design and Analysis for Field Studies (Springer Science & Business Media, 2002).
Johnson, D. S., Thomas, D. L., Hoef, J. M. V. & Christ, A. A general framework for the analysis of animal resource selection from telemetry data. Biometrics 64, 968–976 (2008).
Google Scholar
Signer, J., Fieberg, J. & Avgar, T. Animal movement tools (amt): R package for managing tracking data and conducting habitat selection analyses. Ecol. Evol. 9, 880–890 (2019).
Google Scholar
Rosenberg, D. K. & McKelvey, K. S. Estimation of habitat selection for central-place foraging animals. J. Wildl. Manag. 63, 1028–1038 (1999).
Google Scholar
Roughgarden, J. Evolution of niche width. American Naturalist 106, 683–718 (1972).
Sargeant, B. L. Individual foraging specialization: niche width versus niche overlap. Oikos 116, 1431–1437 (2007).
Google Scholar
Opsahl, T. & Panzarasa, P. Clustering in weighted networks. Soc. Netw. 31, 155–163 (2009).
Google Scholar
Almeida‐Neto, M., Guimarães, P., Guimarães, P. R., Loyola, R. D. & Ulrich, W. A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos 117, 1227–1239 (2008).
Google Scholar
Opsahl, T. Structure and Evolution of Weighted Networks (University of London (Queen Mary College), 2009).
Hertel, A. G., Niemelä, P. T., Dingemanse, N. J. & Mueller, T. A guide for studying among-individual behavioral variation from movement data in the wild. Mov. Ecol. 8, 30 (2020).
Google Scholar
Carlson, B., Rotics, S., Nathan, R., Wikelski, M. & Jetz, W. Data from: Individual environmental niches in mobile organisms. Movebank Data Repository. https://doi.org/10.5441/001/1.rj21g1p1 (2021).
Carlson, B., Rotics, S., Nathan, R., Wikelski, M. & Jetz, W. Code from: Individual environmental niches in mobile organisms. Zenodo. https://doi.org/10.5281/zenodo.5032460 (2021).
Source: Ecology - nature.com