in

Individual environmental niches in mobile organisms

  • 1.

    Ceballos, G., Ehrlich, P. R. & Dirzo, R. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc. Natl Acad. Sci. USA 114, E6089–E6096 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 2.

    Pecl, G. T. et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 3.

    Newbold, T. Future effects of climate and land-use change on terrestrial vertebrate community diversity under different scenarios. Proc. R. Soc. B: Biol. Sci. 285, 20180792 (2018).

    Article 

    Google Scholar 

  • 4.

    IPBES. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services. https://zenodo.org/record/3553579#.XxWzvZ5Kh-U, https://doi.org/10.5281/zenodo.3553579 (2019).

  • 5.

    Powers, R. P. & Jetz, W. Global habitat loss and extinction risk of terrestrial vertebrates under future land-use-change scenarios. Nat. Climate Change 1. https://doi.org/10.1038/s41558-019-0406-z (2019).

  • 6.

    Kendall, B. E. & Fox, G. A. Variation among individuals and reduced demographic stochasticity. Conserv. Biol. 16, 109–116 (2002).

    Article 

    Google Scholar 

  • 7.

    Bonnot, T. W., Cox, W. A., Thompson, F. R. & Millspaugh, J. J. Threat of climate change on a songbird population through its impacts on breeding. Nat. Clim. Change 8, 718–722 (2018).

    ADS 
    Article 

    Google Scholar 

  • 8.

    Valladares, F. et al. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol. Lett. 17, 1351–1364 (2014).

    PubMed 
    Article 

    Google Scholar 

  • 9.

    Bestion, E., Clobert, J. & Cote, J. Dispersal response to climate change: scaling down to intraspecific variation. Ecol. Lett. 18, 1226–1233 (2015).

    Article 

    Google Scholar 

  • 10.

    Oney, B., Reineking, B., O’Neill, G. & Kreyling, J. Intraspecific variation buffers projected climate change impacts on Pinus contorta. Ecol. Evol. 3, 437–449 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 11.

    Uriarte, M. & Menge, D. Variation between individuals fosters regional species coexistence. Ecol. Lett. 21, 1496–1504 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 12.

    Banitz, T. Spatially structured intraspecific trait variation can foster biodiversity in disturbed, heterogeneous environments. Oikos 128, 1478–1491 (2019).

  • 13.

    Bailey, J. K. Incorporating eco-evolutionary dynamics into global change research. Funct. Ecol. 28, 3–4 (2014).

    Article 

    Google Scholar 

  • 14.

    Cianciaruso, M. V., Batalha, M. A., Gaston, K. J. & Petchey, O. L. Including intraspecific variability in functional diversity. Ecology 90, 81–89 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 15.

    Bolnick, D. I. et al. The ecology of individuals: incidence and implications of individual specialization. Am. Naturalist 161, 1–28 (2003).

    MathSciNet 
    Article 

    Google Scholar 

  • 16.

    Bolnick, D. I., Svanbäck, R., Araújo, M. S. & Persson, L. Comparative support for the niche variation hypothesis that more generalized populations also are more heterogeneous. Proc. Natl Acad. Sci. USA 104, 10075–10079 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 17.

    Araújo, M. S., Bolnick, D. I. & Layman, C. A. The ecological causes of individual specialisation. Ecol. Lett. 14, 948–958 (2011).

    PubMed 
    Article 

    Google Scholar 

  • 18.

    Van Valen, L. Morphological variation and width of ecological niche. Am. Naturalist 99, 377–390 (1965).

    Article 

    Google Scholar 

  • 19.

    Hocking, M. D., Darimont, C. T., Christie, K. S. & Reimchen, T. E. Niche variation in burying beetles (Nicrophorus spp.) associated with marine and terrestrial carrion. Can. J. Zool. 85, 437–442 (2007).

    Article 

    Google Scholar 

  • 20.

    Iguchi, K., Matsubara, N., Yodo, T. & Maekawa, K. Individual food niche specialization in stream-dwelling charr. Ichthyol. Res. 51, 321–326 (2004).

    Article 

    Google Scholar 

  • 21.

    Araújo, M. S., Bolnick, D. I., Machado, G., Giaretta, A. A. & dos Reis, S. F. Using δ13C stable isotopes to quantify individual-level diet variation. Oecologia 152, 643–654 (2007).

    ADS 
    Article 

    Google Scholar 

  • 22.

    Costa, G. C., Mesquita, D. O., Colli, G. R. & Vitt, L. J. Niche expansion and the niche variation hypothesis: does the degree of individual variation increase in depauperate assemblages? Am. Naturalist 172, 868–877 (2008).

    Article 

    Google Scholar 

  • 23.

    Sheppard, C. E. et al. Intragroup competition predicts individual foraging specialisation in a group-living mammal. Ecol. Lett. 21, 665–673 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 24.

    Pol, M. V. D., Brouwer, L., Ens, B. J., Oosterbeek, K. & Tinbergen, J. M. Fluctuating selection and the maintenance of individual and sex-specific diet specialization in free-living oystercatchers. Evolution 64, 836–851 (2010).

    PubMed 
    Article 

    Google Scholar 

  • 25.

    Soberón, J. Grinnellian and Eltonian niches and geographic distributions of species. Ecol. Lett. 10, 1115–1123 (2007).

    PubMed 
    Article 

    Google Scholar 

  • 26.

    Elith, J. & Leathwick, J. R. Species distribution models: ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677 (2009).

    Article 

    Google Scholar 

  • 27.

    Tingley, M. W., Monahan, W. B., Beissinger, S. R. & Moritz, C. Birds track their Grinnellian niche through a century of climate change. Proc. Natl Acad. Sci. USA 106, 19637–19643 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 28.

    Svanbäck, R. & Bolnick, D. I. Intraspecific competition affects the strength of individual specialization: an optimal diet theory method. Evol. Ecol. Res 7, 993–1012 (2005).

    Google Scholar 

  • 29.

    Sanz-Aguilar, A., Jovani, R., Melián, C. J., Pradel, R. & Tella, J. L. Multi-event capture–recapture analysis reveals individual foraging specialization in a generalist species. Ecology 96, 1650–1660 (2015).

    Article 

    Google Scholar 

  • 30.

    Orłowski, G. et al. Linking land cover satellite data with dietary variation and reproductive output in an opportunistic forager: Arable land use can boost an ontogenetic trophic bottleneck in the White Stork Ciconia ciconia. Sci. Total Environ. 646, 491–502 (2019).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 31.

    Teuschl, Y., Taborsky, B. & Taborsky, M. How do cuckoos find their hosts? The role of habitat imprinting. Anim. Behav. 56, 1425–1433 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 32.

    Davis, J. M. & Stamps, J. A. The effect of natal experience on habitat preferences. Trends Ecol. Evolution 19, 411–416 (2004).

    Article 

    Google Scholar 

  • 33.

    Fretwell, S. D. Populations in a Seasonal Environment (Princeton University Press, 1972).

  • 34.

    Ingram, T., Costa‐Pereira, R. & Araújo, M. S. The dimensionality of individual niche variation. Ecology 99, 536–549 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 35.

    Abrahms, B. et al. Climate mediates the success of migration strategies in a marine predator. Ecol. Lett. 21, 63–71 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 36.

    Courbin, N. et al. Short-term prey field lability constrains individual specialisation in resource selection and foraging site fidelity in a marine predator. Ecol. Lett. 21, 1043–1054 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 37.

    Montgomery, R. A. et al. Evaluating the individuality of animal-habitat relationships. Ecol. Evol. 8, 10893–10901 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 38.

    Harris, S. M. et al. Personality predicts foraging site fidelity and trip repeatability in a marine predator. J. Anim. Ecol. 89, 68–79 (2020).

    PubMed 
    Article 

    Google Scholar 

  • 39.

    Hutchinson Concluding remarks. Cold Spring Harb. Symp. Quant. Biol. 22, 415–427 (1957).

    Article 

    Google Scholar 

  • 40.

    Hutchinson, G. E. An Introduction to Population Ecology (Yale University Press, 1978).

  • 41.

    Lele, S. R., Merrill, E. H., Keim, J. & Boyce, M. S. Selection, use, choice and occupancy: clarifying concepts in resource selection studies. J. Anim. Ecol. 82, 1183–1191 (2013).

    PubMed 
    Article 

    Google Scholar 

  • 42.

    Leclerc, M. et al. Quantifying consistent individual differences in habitat selection. Oecologia 180, 697–705 (2016).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • 43.

    Hertel, A. G. et al. Don’t poke the bear: using tracking data to quantify behavioural syndromes in elusive wildlife. Anim. Behav. 147, 91–104 (2019).

    Article 

    Google Scholar 

  • 44.

    Bastille‐Rousseau, G. & Wittemyer, G. Leveraging multidimensional heterogeneity in resource selection to define movement tactics of animals. Ecol. Lett. 22, 1417–1427 (2019).

    PubMed 
    Article 

    Google Scholar 

  • 45.

    Costa‐Pereira, R., Rudolf, V. H. W., Souza, F. L. & Araújo, M. S. Drivers of individual niche variation in coexisting species. J. Anim. Ecol. 87, 1452–1464 (2018).

  • 46.

    Bolnick, D. I., Yang, L. H., Fordyce, J. A., Davis, J. M. & Svanbäck, R. Measuring individual-level resource specialization. Ecology 83, 2936–2941 (2002).

    Article 

    Google Scholar 

  • 47.

    Araújo, M. S. et al. Nested diets: a novel pattern of individual-level resource use. Oikos 119, 81–88 (2010).

    Article 

    Google Scholar 

  • 48.

    Dunne, J. A. in: Ecological Networks: Linking Structure to Dynamics in Food Webs (eds Pascual, M. & Dunne, J. A.) 27–86 (Oxford University Press, 2006).

  • 49.

    Hart, S. P., Schreiber, S. J. & Levine, J. M. How variation between individuals affects species coexistence. Ecol. Lett. https://doi.org/10.1111/ele.12618 (2016).

  • 50.

    Bascompte, J., Jordano, P. & Olesen, J. M. Asymmetric coevolutionary networks facilitate biodiversity maintenance. Science 312, 431–433 (2006).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 51.

    Tinker, M. T. et al. Structure and mechanism of diet specialisation: testing models of individual variation in resource use with sea otters. Ecol. Lett. 15, 475–483 (2012).

    Article 

    Google Scholar 

  • 52.

    Dáttilo, W., Serio‐Silva, J. C., Chapman, C. A. & Rico‐Gray, V. Highly nested diets in intrapopulation monkey–resource food webs. Am. J. Primatol. 76, 670–678 (2014).

    PubMed 
    Article 

    Google Scholar 

  • 53.

    Durell, S. E. A. L. V. D., Goss-Custard, J. D. & Caldow, R. W. G. Sex-related differences in diet and feeding method in the oystercatcher Haematopus ostralegus. J. Anim. Ecol. 62, 205–215 (1993).

    Article 

    Google Scholar 

  • 54.

    Bolnick, D. I. & Ballare, K. M. Resource diversity promotes among-individual diet variation, but not genomic diversity, in lake stickleback. Ecol. Lett. 23, 495–505 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 55.

    Nakagawa, S. & Schielzeth, H. Repeatability for Gaussian and non-Gaussian data: a practical guide for biologists. Biol. Rev. 85, 935–956 (2010).

    PubMed 

    Google Scholar 

  • 56.

    Fortin, D., Morris, D. W. & McLoughlin, P. D. Habitat selection and the evolution of specialists in heterogeneous environments. Isr. J. Ecol. Evolution 54, 311–328 (2008).

    Article 

    Google Scholar 

  • 57.

    Pires, M. M. et al. The nested assembly of individual-resource networks. J. Anim. Ecol. 80, 896–903 (2011).

    MathSciNet 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 58.

    Cantor, M., Pires, M. M., Longo, G. O., Guimarães, P. R. & Setz, E. Z. F. Individual variation in resource use by opossums leading to nested fruit consumption. Oikos 122, 1085–1093 (2013).

    Article 

    Google Scholar 

  • 59.

    Santamaría, S. et al. Diet composition of the lizard Podarcis lilfordi (Lacertidae) on 2 small islands: an individual-resource network approach. Curr. Zool. 66, 39–49 (2020).

    PubMed 
    Article 

    Google Scholar 

  • 60.

    Carrascal, L. M., Alonso, J. C. & Alonso, J. A. Aggregation size and foraging behaviour of white storks Ciconia ciconia during the breeding season. Ardea 78, 399–404 (1990).

    Google Scholar 

  • 61.

    Piper, W. H. In: Current Ornithology (eds. Nolan, V., Ketterson, E. D. & Thompson, C. F.) 125–187 https://doi.org/10.1007/978-1-4757-9915-6_4 (Springer US, 1997).

  • 62.

    Marzlufi, J. M. & Heinrich, B. Foraging by common ravens in the presence and absence of territory holders: an experimental analysis of social foraging. Anim. Behav. 42, 755–770 (1991).

    Article 

    Google Scholar 

  • 63.

    van Overveld, T. et al. Food predictability and social status drive individual resource specializations in a territorial vulture. Sci. Rep. 8, 15155 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 64.

    Moore, S. A. & Bronte, C. R. Delineation of sympatric morphotypes of Lake Trout in Lake Superior. Trans. Am. Fish. Soc. 130, 1233–1240 (2001).

    Article 

    Google Scholar 

  • 65.

    Toscano, B. J., Gownaris, N. J., Heerhartz, S. M. & Monaco, C. J. Personality, foraging behavior and specialization: integrating behavioral and food web ecology at the individual level. Oecologia 182, 55–69 (2016).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • 66.

    Johnson, D. H. The comparison of usage and availability measurements for evaluating resource preference. Ecology 61, 65–71 (1980).

    Article 

    Google Scholar 

  • 67.

    Bolnick, D. I. et al. Why intraspecific trait variation matters in community ecology. Trends Ecol. Evol. 26, 183–192 (2011).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 68.

    van Toor, M. L. et al. Flexibility of habitat use in novel environments: insights from a translocation experiment with lesser black-backed gulls. R. Soc. Open Sci. 4, 160164 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 69.

    Yates, K. L. et al. Outstanding challenges in the transferability of ecological models. Trends Ecol. Evolution 33, 790–802 (2018).

    Article 

    Google Scholar 

  • 70.

    ICARUS. Homepage—Animal Sensors Website. https://www.icarus.mpg.de/en (2020).

  • 71.

    Toledo, S. et al. Cognitive map-based navigation in wild bats revealed by a new high-throughput tracking system. Science 369, 188–193 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 72.

    Wikelski, M. & Kays, R. Movebank: Archive, Analysis and Sharing of Animal Movement Data (World Wide Web Electronic Publication, 2014).

  • 73.

    Leitão, P. J. & Santos, M. J. Improving models of species ecological niches: a remote sensing overview. Front. Ecol. Evol. 7, 9 (2019).

  • 74.

    Oeser, J. et al. Habitat metrics based on multi-temporal Landsat imagery for mapping large mammal habitat. Remote Sens. Ecol. Conserv. 6, 52–69 (2020).

    Article 

    Google Scholar 

  • 75.

    Valerio, F. et al. Predicting microhabitat suitability for an endangered small mammal using sentinel-2 data. Remote Sens. 12, 562 (2020).

    ADS 
    Article 

    Google Scholar 

  • 76.

    Rotics, S. et al. The challenges of the first migration: movement and behaviour of juvenile vs. adult white storks with insights regarding juvenile mortality. J. Anim. Ecol. 85, 938–947 (2016).

    PubMed 
    Article 

    Google Scholar 

  • 77.

    Werner, T. K. & Sherry, T. W. Behavioral feeding specialization in Pinaroloxias inornata, the “Darwin’s Finch” of Cocos Island, Costa Rica. Proc. Natl Acad. Sci. USA 84, 5506–5510 (1987).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 78.

    Zurell, D. et al. Home range size and resource use of breeding and non-breeding white storks along a land use gradient. Front. Ecol. Evol. 6, 1–11 (2018).

  • 79.

    Bunnefeld, N. et al. A model-driven approach to quantify migration patterns: individual, regional and yearly differences. J. Anim. Ecol. 80, 466–476 (2011).

    PubMed 
    Article 

    Google Scholar 

  • 80.

    Fleming, C. H. et al. Rigorous home range estimation with movement data: a new autocorrelated kernel density estimator. Ecology 96, 1182–1188 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 81.

    Calabrese, J. M., Fleming, C. H. & Gurarie, E. ctmm: an r package for analyzing animal relocation data as a continuous-time stochastic process. Methods Ecol. Evol. 7, 1124–1132 (2016).

    Article 

    Google Scholar 

  • 82.

    Thurfjell, H., Ciuti, S. & Boyce, M. S. Applications of step-selection functions in ecology and conservation. Mov. Ecol. 2, 4 (2014).

  • 83.

    Blonder, B. et al. New approaches for delineating n-dimensional hypervolumes. Methods Ecol. Evolution 9, 305–319 (2018).

    Article 

    Google Scholar 

  • 84.

    Elliot, A., Garcia, E. F. J. & Boesman, P. F. D. In: Birds of the World (eds. del Hoyo, J. Elliott, A., Sargatal, J. Christie, D. A. & de Juana, E.) (Cornell Lab of Ornithology, 2020).

  • 85.

    Gilbert, N. I. et al. Are white storks addicted to junk food? Impacts of landfill use on the movement and behaviour of resident white storks (Ciconia ciconia) from a partially migratory population. Mov. Ecol. 4, 1 (2016).

    Article 

    Google Scholar 

  • 86.

    Alonso, J. C., Alonso, J. A. & Carrascal, L. M. Habitat selection by foraging White Storks, Ciconia ciconia, during the breeding season. Can. J. Zool. https://doi.org/10.1139/z91-270 (2011).

  • 87.

    Barbaro, L., Giffard, B., Charbonnier, Y., Halder, Ivan & Brockerhoff, E. G. Bird functional diversity enhances insectivory at forest edges: a transcontinental experiment. Diversity Distrib. 20, 149–159 (2014).

    Article 

    Google Scholar 

  • 88.

    Fisher, R. J. & Davis, S. K. From Wiens to Robel: a review of grassland-bird habitat selection. J. Wildl. Manag. 74, 265–273 (2010).

    Article 

    Google Scholar 

  • 89.

    Schielzeth, H. Simple means to improve the interpretability of regression coefficients. Methods Ecol. Evol. 1, 103–113 (2010).

    Article 

    Google Scholar 

  • 90.

    Gorelick, N. et al. Google earth engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).

    ADS 
    Article 

    Google Scholar 

  • 91.

    Manly, B. F. L., McDonald, L., Thomas, D., McDonald, T. L. & Erickson, W. P. Resource Selection by Animals: Statistical Design and Analysis for Field Studies (Springer Science & Business Media, 2002).

  • 92.

    Johnson, D. S., Thomas, D. L., Hoef, J. M. V. & Christ, A. A general framework for the analysis of animal resource selection from telemetry data. Biometrics 64, 968–976 (2008).

    MathSciNet 
    PubMed 
    MATH 
    Article 

    Google Scholar 

  • 93.

    Signer, J., Fieberg, J. & Avgar, T. Animal movement tools (amt): R package for managing tracking data and conducting habitat selection analyses. Ecol. Evol. 9, 880–890 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 94.

    Rosenberg, D. K. & McKelvey, K. S. Estimation of habitat selection for central-place foraging animals. J. Wildl. Manag. 63, 1028–1038 (1999).

    Article 

    Google Scholar 

  • 95.

    Roughgarden, J. Evolution of niche width. American Naturalist 106, 683–718 (1972).

  • 96.

    Sargeant, B. L. Individual foraging specialization: niche width versus niche overlap. Oikos 116, 1431–1437 (2007).

    Article 

    Google Scholar 

  • 97.

    Opsahl, T. & Panzarasa, P. Clustering in weighted networks. Soc. Netw. 31, 155–163 (2009).

    Article 

    Google Scholar 

  • 98.

    Almeida‐Neto, M., Guimarães, P., Guimarães, P. R., Loyola, R. D. & Ulrich, W. A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos 117, 1227–1239 (2008).

    Article 

    Google Scholar 

  • 99.

    Opsahl, T. Structure and Evolution of Weighted Networks (University of London (Queen Mary College), 2009).

  • 100.

    Hertel, A. G., Niemelä, P. T., Dingemanse, N. J. & Mueller, T. A guide for studying among-individual behavioral variation from movement data in the wild. Mov. Ecol. 8, 30 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 101.

    Carlson, B., Rotics, S., Nathan, R., Wikelski, M. & Jetz, W. Data from: Individual environmental niches in mobile organisms. Movebank Data Repository. https://doi.org/10.5441/001/1.rj21g1p1 (2021).

  • 102.

    Carlson, B., Rotics, S., Nathan, R., Wikelski, M. & Jetz, W. Code from: Individual environmental niches in mobile organisms. Zenodo. https://doi.org/10.5281/zenodo.5032460 (2021).


  • Source: Ecology - nature.com

    Spatial models of giant pandas under current and future conditions reveal extinction risks

    Investigating materials for safe, secure nuclear power