in

Infection effects of the new microsporidian species Tubulinosema suzukii on its host Drosophila suzukii

  • 1.

    Capella-Gutiérrez, S., Marcet-Houben, M. & Gabaldon, T. Phylogenomics supports microsporidia as the earliest diverging clade of sequenced fungi. BMC Biol. 10, 47. https://doi.org/10.1186/1741-7007-10-47 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 2.

    Corsaro, D. et al. Filling gaps in the microsporidian tree: rDNA phylogeny of Chytridiopsis typographi (Microsporidia: Chytridiopsida). Parasitol. Res. 118, 169–180. https://doi.org/10.1007/s00436-018-6130-1 (2019).

    Article 
    PubMed 

    Google Scholar 

  • 3.

    Corsaro, D. et al. Molecular identification of Nucleophaga terricolae sp. nov. (Rozellomycota), and new insights on the origin of the Microsporidia. Parasitol. Res. 115, 3003–3011 (2016).

    Article 

    Google Scholar 

  • 4.

    James, T. Y. et al. Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature 443, 818–822 (2006).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 5.

    Sprague, V. & Becnel, J. J. in The Microsporidia and Microsporidiosis (eds M. Wittner & L. M. Weiss) 517–530 (ASM Press, 1999).

  • 6.

    Dunn, A. M., Terry, R. S. & Smith, J. E. Transovarial transmission in the microsporidia. Adv. Parasitol. 48, 57–100. https://doi.org/10.1016/S0065-308X(01)48005-5 (2001).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 7.

    Goertz, D. & Hoch, G. Vertical transmission and overwintering of Microsporidia in the gypsy moth, Lymantria dispar. J. Invertebr. Pathol. 99, 43–48. https://doi.org/10.1016/j.jip.2008.03.008 (2008).

    Article 
    PubMed 

    Google Scholar 

  • 8.

    Becnel, J. J. & Andreadis, T. G. in Microsporidia: Pathogens of Opportunity (eds L. M. Weiss & J. J. Becnel) 521–570 (Wiley, 2014).

  • 9.

    Kellen, W. R. & Lindegren, J. E. Modes of transmission of Nosema plodiae Kellen and Lindegren, a pathogen of Plodia interpunctella (Hübner). J. Stored Prod. Res. 7, 31–34. https://doi.org/10.1016/0022-474X(71)90035-X (1971).

    Article 

    Google Scholar 

  • 10.

    Vávra, J. & Larsson, R. J. in Microsporidia: Pathogens of Opportunity (eds L. M. Weiss & J. J. Becnel) 1–70 (Wiley, 2014).

  • 11.

    Mudasar, M., Mathivanan, V., Shah, G. N., Mir, G. M. & Selvisabhanayakam, M. Nosemosis and its effect on performance of honey bees: A review. Int. J. Pharm. Bio. Sci. 4, 923–937 (2013).

    Google Scholar 

  • 12.

    Wolf, S. et al. So near and yet so far: Harmonic radar reveals reduced homing ability of Nosema infected honeybees. PLoS ONE 9, e103989. https://doi.org/10.1371/journal.pone.0103989 (2014).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 13.

    Naug, D. & Gibbs, A. Behavioral changes mediated by hunger in honeybees infected with Nosema ceranae. Apidologie 40, 595–599 (2009).

    Article 

    Google Scholar 

  • 14.

    Dussaubat, C. et al. Flight behavior and pheromone changes associated to Nosema ceranae infection of honey bee workers (Apis mellifera) in field conditions. J. Invertebr. Pathol. 113, 42–51 (2013).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Goblirsch, M., Huang, Z. Y. & Spivak, M. Physiological and behavioral changes in honey bees (Apis mellifera) induced by Nosema ceranae infection. PLoS ONE 8, 6 (2013).

    Google Scholar 

  • 16.

    Lipsitch, M., Nowak, M. A., Ebert, D. & May, R. M. The population dynamics of vertically and horizontally transmitted parasites. Proc. R. Soc. Lond. B 260, 321–327. https://doi.org/10.1098/rspb.1995.0099 (1995).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 17.

    Goertz, D., Solter, L. F. & Linde, A. Horizontal and vertical transmission of a Nosema sp. (Microsporidia) from Lymantria dispar (L.) (Lepidoptera: Lymantriidae). J. Invertebr. Pathol. 95, 9–16. https://doi.org/10.1016/j.jip.2006.11.003 (2007).

    Article 
    PubMed 

    Google Scholar 

  • 18.

    Kellen, W. R., Chapman, H. C., Clark, T. B. & Lindegren, J. E. Host-parasite relationships of some Thelohania from mosquitoes (Nosematidae: Microsporidia). J. Invertebr. Pathol. 7, 161–166. https://doi.org/10.1016/0022-2011(65)90030-3 (1965).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 19.

    Dunn, A. M. & Smith, J. E. Microsporidian life cycles and diversity: the relationship between virulence and transmission. Microbes Infect. 3, 381–388. https://doi.org/10.1016/S1286-4579(01)01394-6 (2001).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 20.

    Terry, R. S. et al. Widespread vertical transmission and associated host sex–ratio distortion within the eukaryotic phylum Microspora. Proc. R. Soc. Lond. B 271, 1783–1789. https://doi.org/10.1098/rspb.2004.2793 (2004).

    Article 

    Google Scholar 

  • 21.

    Mercer, C. & Wigley, P. A microsporidian pathogen of the poroporo stem borer, Sceliodes cordalis (Dbld)(Lepidoptera: Pyralidae): Effects on adult reproductive success. J. Invertebr. Pathol. 49, 108–115. https://doi.org/10.1016/0022-2011(87)90132-7 (1987).

    Article 

    Google Scholar 

  • 22.

    Bauer, L. S. & Nordin, G. L. Effect of Nosema fumiferanae (Microsporida) on fecundity, fertility, and progeny performance of Choristoneura fumiferana (Lepidoptera: Tortricidae). Environ. Entomol. 18, 261–265. https://doi.org/10.1093/ee/18.2.261 (1989).

    Article 

    Google Scholar 

  • 23.

    Futerman, P. et al. Fitness effects and transmission routes of a microsporidian parasite infecting Drosophila and its parasitoids. Parasitology 132, 479–492. https://doi.org/10.1017/S0031182005009339 (2006).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 24.

    Goertz, D., Golldack, J. & Linde, A. Two different and sublethal isolates of Nosema lymantriae (Microsporidia) reduce the reproductive success of their host, Lymantria dispar. Biocontrol Sci. Technol. 18, 419–430. https://doi.org/10.1080/09583150801993212 (2008).

    Article 

    Google Scholar 

  • 25.

    Lockwood, J. A., Bomar, C. R. & Ewen, A. B. The history of biological control with Nosema locustae: Lessons for locust management. Int. J. Trop. Insect Sci. 19, 333–350. https://doi.org/10.1017/S1742758400018968 (1999).

    Article 

    Google Scholar 

  • 26.

    Kiritani, K. & Yamamura, K. in Invasive Species: Vectors and Management Strategies. (ed J. Carlton) 44–67 (Island Press, 2003).

  • 27.

    Walsh, D. B. et al. Drosophila suzukii (Diptera: Drosophilidae): invasive pest of ripening soft fruit expanding its geographic range and damage potential. J. Integr. Pest Manage. 2, G1–G7. https://doi.org/10.1603/IPM10010 (2011).

    Article 

    Google Scholar 

  • 28.

    Cini, A., Ioriatti, C. & Anfora, G. A review of the invasion of Drosophila suzukii in Europe and a draft research agenda for integrated pest management. Bull. Insectol. 65, 149–160 (2012).

    Google Scholar 

  • 29.

    Tochen, S. et al. Temperature-related development and population parameters for Drosophila suzukii (Diptera: Drosophilidae) on cherry and blueberry. Environ. Entomol. 43, 501–510. https://doi.org/10.1603/en13200 (2014).

    Article 
    PubMed 

    Google Scholar 

  • 30.

    Chabert, S., Allemand, R., Poyet, M., Eslin, P. & Gibert, P. Ability of European parasitoids (Hymenoptera) to control a new invasive Asiatic pest, Drosophila suzukii. Biol. Control 63, 40–47. https://doi.org/10.1016/j.biocontrol.2012.05.005 (2012).

    Article 

    Google Scholar 

  • 31.

    Gabarra, R., Riudavets, J., Rodríguez, G., Pujade-Villar, J. & Arnó, J. Prospects for the biological control of Drosophila suzukii. Biocontrol 60, 331–339. https://doi.org/10.1007/s10526-014-9646-z (2015).

    Article 

    Google Scholar 

  • 32.

    Cuthbertson, A. G. S. & Audsley, N. Further screening of entomopathogenic fungi and nematodes as control agents for Drosophila suzukii. Insects 7, 24. https://doi.org/10.3390/insects7020024 (2016).

    Article 
    PubMed Central 

    Google Scholar 

  • 33.

    Woltz, J. M., Donahue, K. M., Bruck, D. J. & Lee, J. C. Efficacy of commercially available predators, nematodes and fungal entomopathogens for augmentative control of Drosophila suzukii. J. Appl. Entomol. 139, 759–770. https://doi.org/10.1111/jen.12200 (2015).

    Article 

    Google Scholar 

  • 34.

    Haye, T. et al. Current SWD IPM tactics and their practical implementation in fruit crops across different regions around the world. J. Pest. Sci. 89, 643–651. https://doi.org/10.1007/s10340-016-0737-8 (2016).

    Article 

    Google Scholar 

  • 35.

    Biganski, S., Jehle, J. A. & Kleespies, R. G. Bacillus thuringiensis serovar israelensis has no effect on Drosophila suzukii Matsumura. J. Appl. Entomol. 142, 33–36. https://doi.org/10.1111/jen.12415 (2018).

    CAS 
    Article 

    Google Scholar 

  • 36.

    Carrau, T., Hiebert, N., Vilcinskas, A. & Lee, K.-Z. Identification and characterization of natural viruses associated with the invasive insect pest Drosophila suzukii. J. Invertebr. Pathol. 154, 74–78. https://doi.org/10.1016/j.jip.2018.04.001 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 37.

    Medd, N. C. et al. The virome of Drosophila suzukii, an invasive pest of soft fruit. BioRxiv 4, 190322. https://doi.org/10.1093/ve/vey009 (2017).

    Article 

    Google Scholar 

  • 38.

    Kaur, R., Siozios, S., Miller, W. J. & Rota-Stabelli, O. Insertion sequence polymorphism and genomic rearrangements uncover hidden Wolbachia diversity in Drosophila suzukii and D. subpulchrella. Sci. Rep. 7, 14815. https://doi.org/10.1038/s41598-017-13808-z (2017).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 39.

    Biganski, S. et al. Molecular and morphological characterisation of a novel microsporidian species, Tubulinosema suzukii, infecting Drosophila suzukii (Diptera: Drosophilidae). J. Invertebr. Pathol. 107440 (2020).

  • 40.

    Anderson, R. M. & May, R. M. Coevolution of hosts and parasites. Parasitology 85, 411–426. https://doi.org/10.1017/S0031182000055360 (1982).

    Article 
    PubMed 

    Google Scholar 

  • 41.

    Aigaki, T. & Ohba, S. Effect of mating status on Drosophila virilis lifespan. Exp. Gerontol. 19, 267–278. https://doi.org/10.1016/0531-5565(84)90022-6 (1984).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 42.

    Partridge, L., Green, A. & Fowler, K. Effects of egg-production and of exposure to males on female survival in Drosophila melanogaster. J. Insect Physiol. 33, 745–749. https://doi.org/10.1016/0022-1910(87)90060-6 (1987).

    Article 

    Google Scholar 

  • 43.

    Bretman, A., Westmancoat, J. D., Gage, M. J. & Chapman, T. Costs and benefits of lifetime exposure to mating rivals in male Drosophila melanogaster. Evolution 67, 2413–2422. https://doi.org/10.1111/evo.12125 (2013).

    Article 
    PubMed 

    Google Scholar 

  • 44.

    Armstrong, E. & Bass, L. K. Nosema kingi: Effects on fecundity, fertility, and longevity of Drosophila melanogaster. J. Exp. Zool. 250, 82–86. https://doi.org/10.1002/jez.1402500111 (1989).

    Article 

    Google Scholar 

  • 45.

    Armstrong, E. Transmission and infectivity studies on Nosema kingi in Drosophila willistoni and other Drosophilids. Z. Parasitenkd. 50, 161–165. https://doi.org/10.1007/BF00380520 (1976).

    Article 

    Google Scholar 

  • 46.

    Armstrong, E., Bass, L., Staker, K. & Harrell, L. A comparison of the biology of a Nosema in Drosophila melanogaster to Nosema kingi in Drosophila willistoni. J. Invertebr. Pathol. 48, 124–126. https://doi.org/10.1016/0022-2011(86)90151-5 (1986).

    Article 

    Google Scholar 

  • 47.

    Vijendravarma, R. K., Godfray, H. C. J. & Kraaijeveld, A. R. Infection of Drosophila melanogaster by Tubulinosema kingi: Stage-specific susceptibility and within-host proliferation. J. Invertebr. Pathol. 99, 239–241. https://doi.org/10.1016/j.jip.2008.02.014 (2008).

    Article 
    PubMed 

    Google Scholar 

  • 48.

    Niehus, S., Giammarinaro, P., Liégeois, S., Quintin, J. & Ferrandon, D. Fly culture collapse disorder: Detection, prophylaxis and eradication of the microsporidian parasite Tubulinosema ratisbonensis infecting Drosophila melanogaster. Fly 6, 193–204. https://doi.org/10.4161/fly.20896 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 49.

    Franchet, A., Niehus, S., Caravello, G. & Ferrandon, D. Phosphatidic acid as a limiting host metabolite for the proliferation of the microsporidium Tubulinosema ratisbonensis in Drosophila flies. Nat Microbiol 4, 645–655 (2019).

    CAS 
    Article 

    Google Scholar 

  • 50.

    Robertson, F. W. & Sang, J. H. The ecological determinants of population growth in a Drosophila culture. I. Fecundity of adult flies. Proc. R. Soc. Lond. B 132, 258–277. https://doi.org/10.1098/rspb.1944.0017 (1944).

    ADS 
    Article 

    Google Scholar 

  • 51.

    Vijendravarma, R. K., Kraaijeveld, A. R. & Godfray, H. C. J. Experimental evolution shows Drosophila melanogaster resistance to a microsporidian pathogen has fitness costs. Evolution 63, 104–114. https://doi.org/10.1111/j.1558-5646.2008.00516.x (2009).

    Article 
    PubMed 

    Google Scholar 

  • 52.

    Rousset, F., Bouchon, D., Pintureau, B., Juchault, P. & Solignac, M. Wolbachia endosymbionts responsible for various alterations of sexuality in arthropods. Proc. R. Soc. Lond. B 250, 91–98. https://doi.org/10.1098/rspb.1992.0135 (1992).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 53.

    Saeed, N., Battisti, A., Martinez-Sañudo, I. & Mori, N. Combined effect of temperature and Wolbachia infection on the fitness of Drosophila suzukii. Bull. Insectol. 71, 161–169 (2018).

    Google Scholar 

  • 54.

    Hamm, C. A. et al. Wolbachia do not live by reproductive manipulation alone: infection polymorphism in Drosophila suzukii and D. subpulchrella. Mol. Ecol. 23, 4871–4885. https://doi.org/10.1111/mec.12901 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 55.

    Mazzetto, F., Gonella, E. & Alma, A. Wolbachia infection affects female fecundity in Drosophila suzukii. Bull. Insectol. 68, 153–157 (2015).

    Google Scholar 

  • 56.

    Hurst, G. D., Johnson, A. P., vd Schulenburg, J. H. G. & Fuyama, Y. Male-killing Wolbachia in Drosophila: a temperature-sensitive trait with a threshold bacterial density. Genetics 156, 699–709 (2000).

  • 57.

    Markow, T. A. Parents without partners: Drosophila as a model for understanding the mechanisms and evolution of parthenogenesis. G3 3, 757–762. https://doi.org/10.1534/g3.112.005421 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 58.

    Wolfner, M. F. The gifts that keep on giving: physiological functions and evolutionary dynamics of male seminal proteins in Drosophila. Heredity 88, 85–93. https://doi.org/10.1038/sj.hdy.6800017 (2002).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 59.

    Blaser, M. & Schmid-Hempel, P. Determinants of virulence for the parasite Nosema whitei in its host Tribolium castaneum. J. Invertebr. Pathol. 89, 251–257. https://doi.org/10.1016/j.jip.2005.04.004 (2005).

    Article 
    PubMed 

    Google Scholar 

  • 60.

    Solter, L. F. in Microsporidia: Pathogens of Opportunity (eds L. M. Weiss & J. J. Becnel) 165–194 (Wiley, 2014).

  • 61.

    Eberle, K. E., Wennmann, J. T., Kleespies, R. G. & Jehle, J. A. in Manual of Techniques in Invertebrate Pathology (ed L. A. Lacey) 15–74 (Academic Press, 2012).

  • 62.

    Hughes, P. & Wood, H. A synchronous peroral technique for the bioassay of insect viruses. J. Invertebr. Pathol. 37, 154–159. https://doi.org/10.1016/0022-2011(81)90069-0 (1981).

    Article 

    Google Scholar 

  • 63.

    Abbott, W. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18, 265–267 (1925).

    CAS 
    Article 

    Google Scholar 

  • 64.

    Software for the statistical analysis of biotests (ToxRat GmbH, Alsdorf, Germany, 2003).

  • 65.

    Pan, G. et al. Invertebrate host responses to microsporidia infections. Dev. Comp. Immunol. 83, 104–113. https://doi.org/10.1016/j.dci.2018.02.004 (2018).

    Article 
    PubMed 

    Google Scholar 

  • 66.

    Roxström-Lindquist, K., Terenius, O. & Faye, I. Parasite-specific immune response in adult Drosophila melanogaster: A genomic study. EMBO Rep. 5, 207–212. https://doi.org/10.1038/sj.embor.7400073 (2004).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 67.

    Kraaijeveld, A. R. & Godfray, H. C. J. Selection for resistance to a fungal pathogen in Drosophila melanogaster. Heredity 100, 400–406. https://doi.org/10.1038/sj.hdy.6801092 (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    Spatial and temporal analysis of cumulative environmental effects of offshore wind farms in the North Sea basin

    Viral load, not food availability or temperature, predicts colony longevity in an invasive eusocial wasp with plastic life history