Randolph, S. E. Ticks are not insects: Consequences of contrasting vector biology for transmission potential.. Parasitol Today 14, 186–192 (1998).
Google Scholar
Hartemink, N. A., Randolph, S. E., Davis, S. A. & Heesterbeek, J. A. P. The basic reproduction number for complex disease systems: Defining R-0 for tick-borne infections. Am. Nat. 171, 743–754 (2008).
Google Scholar
Tsao, J. Reviewing molecular adaptations of Lyme borreliosis spirochetes in the context of reproductive fitness in natural transmission cycles. Vet. Res. 40, 1 (2009).
Google Scholar
Niebylski, M. L., Peacock, M. G. & Schwan, T. G. Lethal effect of Rickettsia rickettsii on its tick vector (Dermacentor andersoni). Appl. Environ. Microbiol. 65, 773–778 (1999).
Google Scholar
Ross, D. E. & Levin, M. L. Effects of Anaplasma phagocytophilum infection on the molting success of Ixodes scapularis (Acari: Ixodidae) larvae. J. Med. Entomol. 41, 476–483. https://doi.org/10.1603/0022-2585-41.3.476 (2004).
Google Scholar
Ferguson, H. M. & Read, A. F. Why is the effect of malaria parasites on mosquito survival still unresolved?. Trends Parasitol. 18, 256–261 (2002).
Google Scholar
Hurd, H., Hogg, J. C. & Renshaw, M. Interactions between bloodfeeding, fecundity and infection in mosquitos. Parasitol Today 11, 411–416. https://doi.org/10.1016/0169-4758(95)80021-2 (1995).
Google Scholar
Lefevre, T. & Thomas, F. Behind the scene, something else is pulling the strings: Emphasizing parasitic manipulation in vector-borne diseases. Infect. Genet. Evol. 8, 504–519. https://doi.org/10.1016/j.meegid.2007.05.008 (2008).
Google Scholar
Hurd, H. Manipulation of medically important insect vectors by their parasites. Annu. Rev. Entomol. 48, 141–161. https://doi.org/10.1146/annurev.ento.48.091801.112722 (2003).
Google Scholar
Lefèvre, T. et al. New prospects for research on manipulation of insect vectors by pathogens. PLoS Pathog. 2, e72. https://doi.org/10.1371/journal.ppat.0020072 (2006).
Google Scholar
Benelli, G. Pathogens manipulating tick behavior-through a glass. Darkly. Pathogens https://doi.org/10.3390/pathogens9080664 (2020).
Google Scholar
Moran, N. A., McCutcheon, J. P. & Nakabachi, A. Genomics and evolution of heritable bacterial symbionts. Annu. Rev. Genet. 42, 165–190. https://doi.org/10.1146/annurev.genet.41.110306.130119 (2008).
Google Scholar
Bonnet, S. I., Binetruy, F., Hernandez-Jarguin, A. M. & Duron, O. The tick microbiome: Why non-pathogenic microorganisms matter in tick biology and pathogen transmission. Front. Cell Infect. Microbiol. https://doi.org/10.3389/fcimb.2017.00236 (2017).
Google Scholar
Duron, O. & Gottlieb, Y. Convergence of nutritional symbioses in obligate blood feeders. Trends Parasitol. 36, 816–825. https://doi.org/10.1016/j.pt.2020.07.007 (2020).
Google Scholar
Li, L. H., Zhang, Y. & Zhu, D. Effects of antibiotic treatment on the fecundity of Rhipicephalus haemaphysaloides ticks. Parasit. Vectors 11, 7. https://doi.org/10.1186/s13071-018-2807-7 (2018).
Google Scholar
Zhang, C. M. et al. Endosymbiont CLS-HI plays a role in reproduction and development of Haemaphysalis longicornis. Exp. Appl. Acarol. 73, 429–438. https://doi.org/10.1007/s10493-017-0194-y (2017).
Google Scholar
Zhong, J., Jasinskas, A. & Barbour, A. G. Antibiotic treatment of the tick vector Amblyomma americanum reduced reproductive fitness. PLoS ONE https://doi.org/10.1371/journal.pone.0000405 (2007).
Google Scholar
Ben-Yosef, M. et al. Coxiella-like endosymbiont of Rhipicephalus sanguineus is required for physiological processes during ontogeny. Front. Microbiol. https://doi.org/10.3389/fmicb.2020.00493 (2020).
Google Scholar
Duron, O. et al. Tick-bacteria mutualism depends on B vitamin synthesis pathways. Curr. Biol. 28, 1896. https://doi.org/10.1016/j.cub.2018.04.038 (2018).
Google Scholar
Guizzo, M. G. et al. A Coxiella mutualist symbiont is essential to the development of Rhipicephalus microplus. Sci. Rep. https://doi.org/10.1038/s41598-017-17309-x (2017).
Google Scholar
Abraham, N. M. et al. Pathogen-mediated manipulation of arthropod microbiota to promote infection. Proc. Natl. Acad. Sci. USA 114, E781–E790. https://doi.org/10.1073/pnas.1613422114 (2017).
Google Scholar
Cirimotich, C. M. et al. Natural microbe-mediated refractoriness to Plasmodium infection in Anopheles gambiae. Science 332, 855–858. https://doi.org/10.1126/science.1201618 (2011).
Google Scholar
Dong, Y., Manfredini, F. & Dimopoulos, G. Implication of the mosquito midgut microbiota in the defense against malaria parasites. PLoS Pathog. https://doi.org/10.1371/journal.ppat.1000423 (2009).
Google Scholar
Gall, C. A. et al. The bacterial microbiome of Dermacentor andersoni ticks influences pathogen susceptibility. ISME J. 10, 1846–1855. https://doi.org/10.1038/ismej.2015.266 (2016).
Google Scholar
Narasimhan, S. et al. Gut microbiota of the tick vector Ixodes scapularis modulate colonization of the Lyme disease spirochete. Cell Host Microbe 15, 58–71. https://doi.org/10.1016/j.chom.2013.12.001 (2014).
Google Scholar
Kurtenbach, K. et al. Fundamental processes in the evolutionary ecology of Lyme borreliosis. Nat. Rev. Microbiol. 4, 660–669 (2006).
Google Scholar
Schotthoefer, A. M. & Frost, H. M. Ecology and epidemiology of Lyme borreliosis. Clin. Lab. Med. 35, 723–743. https://doi.org/10.1016/j.cll.2015.08.003 (2015).
Google Scholar
Herrmann, C. & Gern, L. Search for blood or water is influenced by Borrelia burgdorferi in Ixodes ricinus. Parasit. Vectors https://doi.org/10.1186/s13071-014-0526-2 (2015).
Google Scholar
Berret, J. & Voordouw, M. J. Lyme disease bacterium does not affect attraction to rodent odour in the tick vector. Parasit. Vectors https://doi.org/10.1186/s13071-015-0856-8 (2015).
Google Scholar
Herrmann, C. & Gern, L. Do the level of energy reserves, hydration status and Borrelia infection influence walking by Ixodes ricinus (Acari: Ixodidae) ticks?. Parasitology 139, 330–337. https://doi.org/10.1017/s0031182011002095 (2012).
Google Scholar
Lefcort, H. & Durden, L. A. The effect of infection with Lyme disease spirochetes (Borrelia burgdorferi) on the phototaxis, activity, and questing height of the tick vector Ixodes scapularis. Parasitology 113, 97–103 (1996).
Google Scholar
Herrmann, C. & Gern, L. Survival of Ixodes ricinus (Acari: Ixodidae) under challenging conditions of temperature and humidity is influenced by Borrelia burgdorferi sensu lato infection. J. Med. Entomol. 47, 1196–1204. https://doi.org/10.1603/me10111 (2010).
Google Scholar
Herrmann, C. & Gern, L. Survival of Ixodes ricinus (Acari: Ixodidae) nymphs under cold conditions is negatively influenced by frequent temperature variations. Ticks Tick Borne Dis 4, 445–451. https://doi.org/10.1016/j.ttbdis.2013.05.002 (2013).
Google Scholar
Herrmann, C., Voordouw, M. J. & Gern, L. Ixodes ricinus ticks infected with the causative agent of Lyme disease, Borrelia burgdorferi sensu lato, have higher energy reserves. Int. J. Parasitol. 43, 477–483. https://doi.org/10.1016/j.ijpara.2012.12.010 (2013).
Google Scholar
van Duijvendijk, G. et al. A Borrelia afzelii infection increases larval tick burden on Myodes glareolus (Rodentia: Cricetidae) and nymphal body weight of Ixodes ricinus (Acari: Ixodidae). J. Med. Entomol. 54, 422–428. https://doi.org/10.1093/jme/tjw157 (2017).
Google Scholar
Carpi, G. et al. Metagenomic profile of the bacterial communities associated with Ixodes ricinus ticks. PLoS ONE 6, e25604. https://doi.org/10.1371/journal.pone.0025604 (2011).
Google Scholar
van Overbeek, L. et al. Diversity of Ixodes ricinus tick-associated bacterial communities from different forests. FEMS Microbiol. Ecol. 66, 72–84. https://doi.org/10.1111/j.1574-6941.2008.00468.x (2008).
Google Scholar
Cheng, D., Vigil, K., Schanes, P., Brown, R. N. & Zhong, J. Prevalence and burden of two rickettsial phylotypes (G021 and G022) in Ixodes pacificus from California by real-time quantitative PCR. Ticks Tick Borne Dis. 4, 280–287. https://doi.org/10.1016/j.ttbdis.2012.12.005 (2013).
Google Scholar
Ninio, C. et al. Antibiotic treatment of the hard tick Ixodes ricinus: Influence on Midichloria mitochondrii load following blood meal. Ticks Tick Borne Dis. 6, 653–657. https://doi.org/10.1016/j.ttbdis.2015.05.011 (2015).
Google Scholar
Diuk-Wasser, M. A. et al. Human risk of infection with Borrelia burgdorferi, the Lyme disease agent, in Eastern United States. Am. J. Trop. Med. Hyg. 86, 320–327. https://doi.org/10.4269/ajtmh.2012.11-0395 (2012).
Google Scholar
Telford, S. R., Mather, T. N., Moore, S. I., Wilson, M. L. & Spielman, A. Incompetence of deer as reservoirs of the Lyme-disease spirochete. Am. J. Trop. Med. Hyg. 39, 105–109 (1988).
Google Scholar
Jaenson, T. G. T. & Talleklint, L. Incompetence of roe deer as reservoirs of the Lyme borreliosis spirochete. J. Med. Entomol. 29, 813–817 (1992).
Google Scholar
van Duijvendijk, G., Sprong, H. & Takken, W. Multi-trophic interactions driving the transmission cycle of Borrelia afzelii between Ixodes ricinus and rodents: A review. Parasit. Vectors 8, 1–11. https://doi.org/10.1186/s13071-015-1257-8 (2015).
Google Scholar
Gomez-Chamorro, A. et al. Susceptibility to infection with Borrelia afzelii and TLR2 polymorphism in a wild reservoir host. Sci. Rep. 9, 1–12. https://doi.org/10.1038/s41598-019-43160-3 (2019).
Google Scholar
Gomez-Chamorro, A. et al. Maternal antibodies provide bank voles with strain-specific protection against infection by the Lyme disease pathogen. Appl. Environ. Microbiol. 85, e01887-e11819. https://doi.org/10.1128/aem.01887-19 (2019).
Google Scholar
Genné, D. et al. Competition between strains of Borrelia afzelii inside the rodent host and the tick vector. Proc. R. Soc. B Biol. Sci. 285, 1–10. https://doi.org/10.1098/rspb.2018.1804 (2018).
Google Scholar
Genné, D. et al. Competition between strains of Borrelia afzelii in the host tissues and consequences for transmission to ticks. ISME J. https://doi.org/10.1038/s41396-021-00939-5 (2021).
Google Scholar
Jacquet, M., Durand, J., Rais, O. & Voordouw, M. J. Cross-reactive acquired immunity influences transmission success of the Lyme disease pathogen, Borrelia afzelii. Infect. Genet. Evol. 36, 131–140. https://doi.org/10.1016/j.meegid.2015.09.012 (2015).
Google Scholar
Jacquet, M., Margos, G., Fingerle, V. & Voordouw, M. J. Comparison of the lifetime host-to-tick transmission between two strains of the Lyme disease pathogen Borrelia afzelii. Parasit. Vectors 9, 1–8. https://doi.org/10.1186/s13071-016-1929-z (2016).
Google Scholar
Belli, A., Sarr, A., Rais, O., Rego, R. O. M. & Voordouw, M. J. Ticks infected via co-feeding transmission can transmit Lyme borreliosis to vertebrate hosts. Sci. Rep. 7, 1–13. https://doi.org/10.1038/s41598-017-05231-1 (2017).
Google Scholar
Hamilton, P. T. et al. Borrelia infection in rodent host has dramatic effects on the microbiome of ticks. bioRxiv preprint (2021).
Tonetti, N., Voordouw, M. J., Durand, J., Monnier, S. & Gern, L. Genetic variation in transmission success of the Lyme borreliosis pathogen Borrelia afzelii. Ticks Tick Borne Dis. 6, 334–343. https://doi.org/10.1016/j.ttbdis.2015.02.007 (2015).
Google Scholar
Lo, N. et al. Widespread distribution and high prevalence of an alpha-proteobacterial symbiont in the tick Ixodes ricinus. Environ. Microbiol. 8, 1280–1287. https://doi.org/10.1111/j.1462-2920.2006.01024.x (2006).
Google Scholar
Prado, S. S. & Almeida, R. P. P. Role of symbiotic gut bacteria in the development of Acrosternum hilare and Murgantia histrionica. Entomol. Exp. Appl. 132, 21–29. https://doi.org/10.1111/j.1570-7458.2009.00863.x (2009).
Google Scholar
Bistolas, K. S. I., Sakamoto, R. I., Fernandes, J. A. M. & Goffredi, S. K. Symbiont polyphyly, co-evolution, and necessity in pentatomid stinkbugs from Costa Rica. Front. Microbiol. https://doi.org/10.3389/fmicb.2014.00349 (2014).
Google Scholar
Taylor, C. M., Coffey, P. L., DeLay, B. D. & Dively, G. P. The importance of gut symbionts in the development of the brown marmorated stink bug, Halyomorpha halys (Stal). PLoS ONE https://doi.org/10.1371/journal.pone.0090312 (2014).
Google Scholar
Prado, S. S., Rubinoff, D. & Almeida, R. P. P. Vertical transmission of a pentatomid caeca-associated symbiont. Ann. Entomol. Soc. Am. 99, 577–585. https://doi.org/10.1603/0013-8746(2006)99[577:Vtoapc]2.0.Co;2 (2006).
Google Scholar
Salem, H., Kreutzer, E., Sudakaran, S. & Kaltenpoth, M. Actinobacteria as essential symbionts in firebugs and cotton stainers (Hemiptera, Pyrrhocoridae). Environ. Microbiol. 15, 1956–1968. https://doi.org/10.1111/1462-2920.12001 (2013).
Google Scholar
R Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical
Computing, 2020).
Bates, D., Machler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).
Google Scholar
Harrell, F. E., Dupont, C. Hmisc: Harrell Miscellaneous v. R package version 4.4-2 (2020).
Wei, T., Simko, V. R package “corrplot”: Visualization of a Correlation Matrix v. (Version 0.84) (2017).
Couret, J. et al. Acquisition of Borrelia burgdorferi infection by larval Ixodes scapularis (Acari: Ixodidae) associated with engorgement measures. J. Med. Entomol. 54, 1055–1060. https://doi.org/10.1093/jme/tjx053 (2017).
Google Scholar
Hanincova, K. et al. Association of Borrelia afzelii with rodents in Europe. Parasitology 126, 11–20. https://doi.org/10.1017/s0031182002002548 (2003).
Google Scholar
Hanincova, K. et al. Association of Borrelia garinii and B. valaisiana with songbirds in Slovakia. Appl. Environ. Microbiol. 69, 2825–2830. https://doi.org/10.1128/aem.69.5.2825-2830.2003 (2003).
Google Scholar
LoGiudice, K., Ostfeld, R. S., Schmidt, K. A. & Keesing, F. The ecology of infectious disease: Effects of host diversity and
community composition on Lyme disease risk. Proc. Natl. Acad. Sci. USA 100, 567–571 (2003).
Talleklint, L. & Jaenson, T. G. T. Transmission of Borrelia burgdorferi s.l. from mammal reservoirs to the primary vector of Lyme borreliosis, Ixodes ricinus (Acari, Ixodidae), in Sweden. J. Med. Entomol. 31, 880–886 (1994).
Google Scholar
Brunner, J. et al. Molting success of Ixodes scapularis varies among individual blood meal hosts and species. J. Med. Entomol. 48, 860–866 (2011).
Gray, J. S., Kahl, O., Lane, R. S., Levin, M. L. & Tsao, J. I. Diapause in ticks of the medically important Ixodes ricinus species complex. Ticks Tick Borne Dis. 7, 992–1003. https://doi.org/10.1016/j.ttbdis.2016.05.006 (2016).
Google Scholar
Gray, J. S. The development and seasonal activity of the tick Ixodes ricinus: a vector of Lyme borreliosis. Rev. Med. Vet.
Entomol. 79, 323–333 (1991).
Jouda, F., Perret, J. L. & Gern, L. Ixodes ricinus density, and distribution and prevalence of Borrelia burgdorferi sensu lato infection along an altitudinal gradient. J. Med. Entomol. 41, 162–169. https://doi.org/10.1603/0022-2585-41.2.162 (2004).
Korenberg, E. I. Seasonal population dynamics of Ixodes ticks and tick-borne encephalitis virus. Exp. Appl. Acarol. 24, 665–681. https://doi.org/10.1023/a:1010798518261 (2000).
Google Scholar
Neelakanta, G., Sultana, H., Fish, D., Anderson, J. F. & Fikrig, E. Anaplasma phagocytophilum induces Ixodes scapularis ticks to express an antifreeze glycoprotein gene that enhances their survival in the cold. J. Clin. Investig. 120, 3179–3190. https://doi.org/10.1172/JCI42868 (2010).
Google Scholar
Anderson, R. A., Koella, J. C. & Hurd, H. The effect of Plasmodium yoelii nigeriensis infection on the feeding persistence of Anopheles stephensi Liston throughout the sporogonic cycle. Proc. R. Soc. B Biol. Sci. 266, 1729–1733 (1999).
Google Scholar
Koella, J. C. An evolutionary view of the interactions between anopheline mosquitoes and malaria parasites. Microbes Infect 1, 303–308. https://doi.org/10.1016/s1286-4579(99)80026-4 (1999).
Google Scholar
Koella, J. C., Sorensen, F. L. & Anderson, R. A. The malaria parasite, Plasmodium falciparum, increases the frequency of multiple feeding of its mosquito vector, Anopheles gambiae. Proc. R. Soc. B Biol. Sci. 265, 763–768 (1998).
Google Scholar
Hurd, H. Host fecundity reduction: a strategy for damage limitation?. Trends Parasitol. 17, 363–368 (2001)..
Hurd, H., Warr, E. & Polwart, A. A parasite that increases host lifespan. Proc. R. Soc. B Biol. Sci. 268, 1749–1753 (2001).
Google Scholar
Rollend, L., Fish, D. & Childs, J. E. Transovarial transmission of Borrelia spirochetes by Ixodes scapularis: A summary of the literature and recent observations. Ticks Tick Borne Dis. 4, 46–51. https://doi.org/10.1016/j.ttbdis.2012.06.008 (2013).
Google Scholar
Richter, D., Debski, A., Hubalek, Z. & Matuschka, F. R. Absence of Lyme disease spirochetes in larval Ixodes ricinus ticks. Vector-Borne Zoonot. 12, 21–27. https://doi.org/10.1089/vbz.2011.0668 (2012).
Google Scholar
Matuschka, F. R., Schinkel, T. W., Klug, B., Spielman, A. & Richter, D. Failure of Ixodes ticks to inherit Borrelia afzelii infection. Appl. Environ. Microbiol. 64, 3089–3091 (1998).
Google Scholar
Salem, H., Florez, L., Gerardo, N. & Kaltenpoth, M. An out-of-body experience: the extracellular dimension for the
transmission of mutualistic bacteria in insects. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2014.2957 (2015).
Buysse, M., Plantard, O., McCoy, K. D., Duron, O. & Menard, C. Tissue localization of Coxiella-like endosymbionts in three European tick species through fluorescence in situ hybridization. Ticks Tick Borne Dis. 10, 798–804. https://doi.org/10.1016/j.ttbdis.2019.03.014 (2019).
Google Scholar
Lalzar, I., Friedmann, Y. & Gottlieb, Y. Tissue tropism and vertical transmission of Coxiella in Rhipicephalus sanguineus and Rhipicephalus turanicus ticks. Environ. Microbiol. 16, 3657–3668. https://doi.org/10.1111/1462-2920.12455 (2014).
Google Scholar
Levin, M. L. & Fish, D. Density-dependent factors regulating feeding success of Ixodes scapularis larvae (Acari: Ixodidae). J. Parasitol. 84, 36–43. https://doi.org/10.2307/3284526 (1998).
Google Scholar
Randolph, S. E. Population regulation in ticks—Role of acquired-resistance in natural and unnatural hosts. Parasitology 79, 141–156 (1979).
Google Scholar
Randolph, S. E. The effect of Babesia microti on feeding and survival in its tick vector, Ixodes trianguliceps. Parasitology 102, 9–16 (1991).
Google Scholar
Dizij, A. & Kurtenbach, K. Clethrionomys glareolus, but not Apodemus flavicollis, acquires resistance to Ixodes ricinus L., the main European vector of Borrelia burgdorferi. Parasite Immunol. 17, 177–183 (1995).
Google Scholar
Dobson, A. D. M., Finnie, T. J. R. & Randolph, S. E. A modified matrix model to describe the seasonal population ecology of the European tick Ixodes ricinus. J. Appl. Ecol. 48, 1017–1028. https://doi.org/10.1111/j.1365-2664.2011.02003.x (2011).
Google Scholar
Ogden, N. H. et al. Vector seasonality, host infection dynamics and fitness of pathogens transmitted by the tick Ixodes scapularis. Parasitology 134, 209–227 (2007).
Google Scholar
Kilpatrick, A. M. et al. Lyme disease ecology in a changing world: Consensus, uncertainty and critical gaps for improving control. Philos. Trans. R. Soc. B https://doi.org/10.1098/rstb.2016.0117 (2017).
Google Scholar
Source: Ecology - nature.com