in

Inferring predator–prey interaction in the subterranean environment: a case study from Dinaric caves

  • 1.

    Sih, A., Crowley, P., McPeek, M., Petranka, J. & Strohmeier, K. Predation, competition, and prey communities: A review of field experiments. Annu. Rev. Ecol. Syst. 16, 269–311 (1985).

    Article 

    Google Scholar 

  • 2.

    Werner, E. E. & Peacor, S. D. A review of trait-mediated indirect interactions in ecological communities. Ecology 84, 1083–1100 (2003).

    Article 

    Google Scholar 

  • 3.

    Abrams, P. A. The evolution of predator–prey interactions: theory and evidence. Annu. Rev. Ecol. Syst. 31, 79–105 (2000).

    Article 

    Google Scholar 

  • 4.

    Lima, S. L. & Bednekoff, P. A. Temporal variation in danger drives antipredator behavior: The predation risk allocation hypothesis. Am. Nat. 153, 649–659 (1999).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 5.

    Peacor, S. D. & Werner, E. E. Nonconsumptive effects of predators and trait-mediated indirect effects. Encycl. Life Sci. https://doi.org/10.1002/9780470015902.a0021216 (2008).

    Article 

    Google Scholar 

  • 6.

    Schmitz, O. J., Krivan, V. & Ovadia, O. Trophic cascades: The primacy of trait-mediated indirect interactions. Ecol. Lett. 7, 153–163 (2004).

    Article 

    Google Scholar 

  • 7.

    Mittelbach, G. G. Fish foraging and habitat choice: a theoretical perspective. In Handbook of Fish Biology and Fisheries, Volume 1 Fish Biology (eds Hart, P. J. B. & Reynolds, J. D.) 251–266 (Blackwell, 2002).

    Chapter 

    Google Scholar 

  • 8.

    Mittelbach, G. G. & McGill, B. J. Community Ecology (Oxford University Press, 2019) https://doi.org/10.1017/CBO9781107415324.004.

    Book 

    Google Scholar 

  • 9.

    Lima, S. L. Nonlethal effects in the ecology of predator-prey interactions. Bioscience 48, 25–34 (1998).

    Article 

    Google Scholar 

  • 10.

    Jeschke, J. M., Laforsch, C. & Tollrian, R. Animal prey defenses. In Encyclopedia of Ecology 189–194 (2008).

  • 11.

    Harvell, C. D. The ecology and evolution of inducible defenses. Q. Rev. Biol. 65, 323–340 (1990).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 12.

    Peckarsky, B. L. et al. Revisiting the classics: Considering nonconsumptive effects in textbook examples of predator prey interactions. Ecology 89, 2416–2425 (2008).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 13.

    Goricki, Š et al. Environmental DNA in subterranean biology: Range extension and taxonomic implications for Proteus. Sci. Rep. 7, 91–93 (2017).

    Article 
    CAS 

    Google Scholar 

  • 14.

    Sket, B. Distribution of Proteus (Amphibia: Urodela: Proteidae) and its possible explanation. J. Biogeogr. 24, 263–280 (1997).

    Article 

    Google Scholar 

  • 15.

    Jugovic, J., Prevorčnik, S., Aljančič, G. & Sketa, B. The atyid shrimp (Crustacea: Decapoda: Atyidae) rostrum: Phylogeny versus adaptation, taxonomy versus trophic ecology. J. Nat. Hist. 44, 2509–2533 (2010).

    Article 

    Google Scholar 

  • 16.

    Aljančič, M. Prehrana močerila. Proteus 23, 224–225 (1961).

    Google Scholar 

  • 17.

    Parzefall, J., Durand, J. P. & Sket, B. Prouteus anguinus Laurenti, 1768—Grottenolm. In Handbuch der Reptilien und Amphibien Europas (ed. Böhme, W.) 59–76 (Aula-Verlag, 1999).

    Google Scholar 

  • 18.

    Trontelj, P., Blejec, A. & Fišer, C. Ecomorphological convergence of cave communities. Evolution 66, 3852–3865 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 19.

    Karaman, S. Podrod Orniphargus u Jugoslaviji I. & II. in O nekim amfipodima—izopodima Balkana i o njihovoj sistematici 119–159 (Srpska akademija nauka-Posebna izdanja CLXIII, 1950).

  • 20.

    Fišer, C., Trontelj, P. & Sket, B. Phylogenetic analysis of the Niphargus orcinus species-aggregate (Crustacea: Amphipoda: Niphargidae) with description of new taxa. J. Nat. Hist. 40, 2265–2315 (2006).

    Article 

    Google Scholar 

  • 21.

    Bollache, L. Ï., Kaldonski, N., Troussard, J. P., Lagrue, C. & Rigaud, T. Spines and behaviour as defences against fish predators in an invasive freshwater amphipod. Anim. Behav. 72, 627–633 (2006).

    Article 

    Google Scholar 

  • 22.

    Copilaş-Ciocianu, D., Borza, P. & Petrusek, A. Extensive variation in the morphological anti-predator defense mechanism of Gammarus roeselii Gervais, 1835 (Crustacea:Amphipoda). Freshw. Sci. 39, 47–55 (2020).

    Article 

    Google Scholar 

  • 23.

    Veech, J. A. A probabilistic model for analysing species co-occurrence. Glob. Ecol. Biogeogr. 22, 252–260 (2013).

    Article 

    Google Scholar 

  • 24.

    Borko, Š, Trontelj, P., Seehausen, O., Moškrič, A. & Fišer, C. A subterranean adaptive radiation of amphipods in Europe. Nat. Commun. 12, 1–12 (2021).

    Article 
    CAS 

    Google Scholar 

  • 25.

    SubBioDB. Subterranean Fauna Database. Research group for speleobiology, Biotechnical faculty, University of Ljubljana. https://db.subbio.net/ (2021).

  • 26.

    Culver, D. C., Fong, D. W. & Jernigan, R. W. Species interactions in cave stream communities: Experimental results and microdistribution effects. Am. Midl. Nat. 126, 364 (1991).

    Article 

    Google Scholar 

  • 27.

    Lavoie, K. H., Helf, K. L. & Poulson, T. L. The biology and ecology of North American cave crickets. J. Cave Karst Stud. 69, 114–134 (2007).

    Google Scholar 

  • 28.

    Ercoli, F. et al. Differing trophic niches of three French stygobionts and their implications for conservation of endemic stygofauna. Aquat. Conserv. Mar. Freshw. Ecosyst. 29, 2193–2203 (2019).

    Article 

    Google Scholar 

  • 29.

    Pacioglu, O. et al. Ecophysiological and life-history adaptations of Gammarus balcanicus (Schäferna, 1922) in a sinking-cave stream from Western Carpathians (Romania). Zoology 139, 125754 (2020).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 30.

    Parimuchová, A., Dušátková, L. P., Kováč, Ľ & Macháčková, T. The food web in a subterranean ecosystem is driven by intraguild predation. Sci. Rep. https://doi.org/10.1038/s41598-021-84521-1 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 31.

    Premate, E. et al. Cave amphipods reveal co-variation between morphology and trophic niche in a low-productivity environment. Freshw. Biol. 66, 1876–1888 (2021).

    Article 

    Google Scholar 

  • 32.

    Sacco, M. et al. Elucidating stygofaunal trophic web interactions via isotopic ecology. PLoS ONE 14, 1–25 (2019).

    MathSciNet 
    Article 
    CAS 

    Google Scholar 

  • 33.

    Pohlman, J. W., Iliffe, T. M. & Cifuentes, L. A. A stable isotope study of organic cycling and the ecology of an anchialine cave ecosystem. Mar. Ecol. Prog. Ser. 155, 17–27 (1997).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 34.

    Graening, G. O. & Brown, A. V. Ecosystem dynamics and pollution effects in an Ozark cave stream. J. Am. Water Resour. Assoc. 39, 1497–1507 (2003).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 35.

    Manenti, R., Melotto, A., Guillaume, O., Ficetola, G. F. & Lunghi, E. Switching from mesopredator to apex predator: How do responses vary in amphibians adapted to cave living?. Behav. Ecol. Sociobiol. 74, 1–13 (2020).

    Article 

    Google Scholar 

  • 36.

    Uiblein, F. & Juberthie, C. Predation in caves: the effects of prey immobility and darkness on the foraging behaviour of two salamanders, Euproctus asper and Proteus anguinus. Behav. Process. 28, 33–40 (1992).

    CAS 
    Article 

    Google Scholar 

  • 37.

    Prevorčnik, S., Verovnik, R., Zagmajster, M. & Sket, B. Biogeography and phylogenetic relations within the Dinaric subgenus Monolistra (Microlistra) (Crustacea: Isopoda: Sphaeromatidae), with a description of two new species. Zool. J. Linn. Soc. 159, 1–21 (2010).

    Article 

    Google Scholar 

  • 38.

    Mammola, S. Finding answers in the dark: Caves as models in ecology fifty years after Poulson and White. Ecography 42, 1331–1351 (2019).

    Article 

    Google Scholar 

  • 39.

    Culver, D. C. & Pipan, T. The Biology of Caves and Other Subterranean Habitats (Oxford University Press, 2009).

    Google Scholar 

  • 40.

    Kellner, K. F. & Swihart, R. K. Accounting for imperfect detection in ecology: A quantitative review. PLoS ONE 9, e111436 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 41.

    Mackenzie, D. I., Bailey, L. L. & Nichols, J. D. Investigating species co-occurrence patterns when species are detected imperfectly. J. Anim. Ecol. 73, 546–555 (2004).

    Article 

    Google Scholar 

  • 42.

    Vörös, J., Márton, O., Schmidt, B. R., Tünde Gál, J. & Jelić, D. Surveying Europe’s only cave-dwelling chordate species (Proteus anguinus) using environmental DNA. PLoS ONE 12, e0170945 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 43.

    Niemiller, M. L. et al. Evaluation of eDNA for groundwater invertebrate detection and monitoring: A case study with endangered Stygobromus (Amphipoda: Crangonyctidae). Conserv. Genet. Resour. 10, 247–257 (2018).

    Article 

    Google Scholar 

  • 44.

    Yonezawa, S., Nakano, T., Nakahama, N., Tomikawa, K. & Isagi, Y. Environmental DNA reveals cryptic diversity within the subterranean amphipod genus Pseudocrangonyx Akatsuka & Komai, 1922 (Amphipoda: Crangonyctoidea: Pseudocrangonyctidae) from Central Japan. J. Crustac. Biol. 40, 479–483 (2020).

    Article 

    Google Scholar 

  • 45.

    Arntzen, J. W. et al. Proteus anguinus. IUCN Red List Threat. Species (2009).

  • 46.

    Communities, T. C. of E. Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. Official J. Eur. Communities 35, 8–51 (1992).

    Google Scholar 

  • 47.

    Vörös, J., Ursenbacher, S. & Jelić, D. Population genetic analyses using 10 new polymorphic microsatellite loci confirms genetic subdivision within the olm, Proteus anguinus. J. Hered. 110, 211–218 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 48.

    Gorički, Š & Trontelj, P. Structure and evolution of the mitochondrial control region and flanking sequences in the European cave salamander Proteus anguinus. Gene 378, 31–41 (2006).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 49.

    Gravel, D., Albouy, C. & Thuiller, W. The meaning of functional trait composition of food webs for ecosystem functioning. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150268 (2016).

    Article 

    Google Scholar 

  • 50.

    Schmitz, O. Predator and prey functional traits: Understanding the adaptive machinery driving predator-prey interactions. F1000Research 6, 1767 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 51.

    R Development Core Team. A language and environment for statistical computing. (2020).

  • 52.

    R Studio Team. RStudio: Integrated Development for R. (2020).

  • 53.

    Wickham, H. & Bryan, J. readxl: Read Excel Files. R package version 1.3.1. (2019).

  • 54.

    Dragulescu, A. A. & Arendt, C. xlsx: Read, Write, Format Excel 2007 and Excel 97/2000/XP/2003 Files. R package version 0.6.1. (2018).

  • 55.

    Wickham, H., Francois, R., Henry, L. & Müller, K. dplyr: A Grammar of Data Manipulation. R package version 0.8.3. (2019).

  • 56.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (Springer-Verlag, 2016).

  • 57.

    Kong, D. Ipaper: Collection of personal practical R functions. (2021).

  • 58.

    Pebesma, E. Simple features for R: Standardized support for spatial vector data. R J. 10, 439–446 (2018).

    Article 

    Google Scholar 

  • 59.

    Hijmas, R. J. raster: Geographic Data Analysis and Modeling. (2020).

  • 60.

    Baddeley, A., Rubak, E. & Turner, R. Spatial Point Patterns: Methodology and Applications with R (Chapman and Hall/CRC Press, 2015).

    MATH 
    Book 

    Google Scholar 

  • 61.

    Kassambara, A. rstatix: Pipe-Friendly Framework for Basic Statistical Tests. R package version 0.5.0. (2020).

  • 62.

    Griffith, D. M., Veech, J. A. & Marsh, C. J. Cooccur: Probabilistic species co-occurrence analysis in R. J. Stat. Softw. 69, 1–17 (2016).

    Article 

    Google Scholar 

  • 63.

    Revell, L. J. phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).

    Article 

    Google Scholar 

  • 64.

    Meade, A. & Pagel, M. Bayes Traits V3. (2017).

  • 65.

    Griffin, R. H. btw: Run BayesTraitsV3 from R. (2018).


  • Source: Ecology - nature.com

    MIT collaborates with Biogen on three-year, $7 million initiative to address climate, health, and equity

    Assessing the origin, genetic structure and demographic history of the common pheasant (Phasianus colchicus) in the introduced European range