in

Influence of competition and intraguild predation between two candidate biocontrol parasitoids on their potential impact against Harrisia cactus mealybug, Hypogeococcus sp. (Hemiptera: Pseudococcidae)

  • 1.

    Arim, M. & Marquet, P. A. Intraguild predation: A widespread interaction related to species biology. Ecol. Lett. 7, 557–564. https://doi.org/10.1111/j.1461-0248.2004.00613.x (2004).

    Article 

    Google Scholar 

  • 2.

    Polis, G. A., Myers, C. A. & Holt, R. D. The ecology and evolution of intraguild predation: Potential competitors that eat each other. Annu. Rev. Ecol. Syst. 20, 297–330. https://doi.org/10.1146/annurev.es.20.110189.001501 (1989).

    Article 

    Google Scholar 

  • 3.

    Rosenheim, J. A., Kaya, H. K., Ehler, L. E., Marois, J. J. & Jaffee, B. A. Intraguild predation among biological-control agents: Theory and evidence. Biol. Control 5, 303–335. https://doi.org/10.1006/bcon.1995.1038 (1995).

    Article 

    Google Scholar 

  • 4.

    Rosenheim, J. A. & Harmon, J. P. The influence of intraguild predation on the suppression of a shared prey population: An empirical reassessment. In Trophic and Guild in Biological Interactions Control (eds Brodeur, J. & Boivin, G.) 1–20 (Springer, 2006) https://doi.org/10.1007/1-4020-4767-3_1.

    Chapter 

    Google Scholar 

  • 5.

    Fonseca, M. M. et al. How to evaluate the potential occurrence of intraguild predation. Exp. Appl. Acarol. 72, 103–114. https://doi.org/10.1007/s10493-017-0142-x (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 6.

    Ferguson, K. I. & Stiling, P. Non-additive effects of multiple natural enemies on aphid populations. Oecologia 108, 375–379 (1996).

    ADS 
    Article 

    Google Scholar 

  • 7.

    Hindayana, D., Meyhöfer, R., Scholz, D. & Poehling, H.-M. Intraguild predation among the hoverfly Episyrphus balteatus de Geer (Diptera: Syrphidae) and other aphidophagous predators. Biol. Control 20, 236–246 (2001).

    Article 

    Google Scholar 

  • 8.

    Denoth, M., Frid, L. & Myers, J. H. Multiple agents in biological control: Improving the odds?. Biol. Control 24, 20–30. https://doi.org/10.1016/S1049-9644(02)00002-6 (2002).

    Article 

    Google Scholar 

  • 9.

    Muştu, M., Kilinçer, N., Ülgentürk, S. & Kaydan, M. B. Feeding behavior of Cryptolaemus montrouzieri on mealybugs parasitized by Anagyrus pseudococci. Phytoparasitica 36, 360–367 (2008).

    Article 

    Google Scholar 

  • 10.

    Lucas, E. Intraguild predation among aphidophagous predators. Eur. J. Entomol. 102, 351–364 (2005).

    Google Scholar 

  • 11.

    Muştu, M. & Kilinçer, N. Intraguild predation of Planococcus ficus parasitoids Anagyrus pseudococci and Leptomastix dactylopii by Nephus kreissli. Biocontrol Sci. Technol. 24, 257–269. https://doi.org/10.1080/09583157.2013.856866 (2014).

    Article 

    Google Scholar 

  • 12.

    Diehl, S. & Feißel, M. Effects of enrichment on three-level food chains with omnivory. Am. Nat. 155, 200–218 (2000).

    Article 

    Google Scholar 

  • 13.

    Holt, R. D. & Polis, G. A. A theoretical framework for intraguild predation. Am. Nat. 149, 745–764 (1997).

    Article 

    Google Scholar 

  • 14.

    Kuijper, L. D. J., Kooi, B. W., Zonneveld, C. & Kooijman, S. A. L. M. Omnivory and food web dynamics. Ecol. Modell. 163, 19–32 (2003).

    Article 

    Google Scholar 

  • 15.

    Morin, P. Productivity, intraguild predation, and population dynamics in experimental food webs. Ecology 80, 752–760 (1999).

    Article 

    Google Scholar 

  • 16.

    Mylius, S. D., Klumpers, K., de Roos, A. M. & Persson, L. Impact of intraguild predation and stage structure on simple communities along a productivity gradient. Am. Nat. 158, 259–276 (2001).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Polis, G. A. & Holt, R. D. Intraguild predation: The dynamics of complex trophic interactions. Trends Ecol. Evol. 7, 151–154 (1992).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Janssen, A. et al. Intraguild predation usually does not disrupt biological control. In Trophic and Guild in Biological Interactions Control (eds Brodeur, J. & Boivin, G.) 21–44 (Springer, 2006) https://doi.org/10.1007/1-4020-4767-3_2.

    Chapter 

    Google Scholar 

  • 19.

    Skalski, G. T. & Gilliam, J. F. Functional responses with predator interference: Viable alternatives to the Holling type II model. Ecology 82, 3083–3092 (2001).

    Article 

    Google Scholar 

  • 20.

    de Villemereuil, P. B. & López-Sepulcre, A. Consumer functional responses under intra- and inter-specific interference competition. Ecol. Modell. 222, 419–426. https://doi.org/10.1016/j.ecolmodel.2010.10.011 (2011).

    Article 

    Google Scholar 

  • 21.

    Sutherland, W. J. From Individual Behaviour to Population Ecology (Oxford Series in Ecology and Evolution, 1996).

    Google Scholar 

  • 22.

    Pedersen, B. S. & Mills, N. J. Single vs. multiple introduction in biological control: The roles of parasitoid efficiency, antagonism and niche overlap. J. Appl. Ecol. 41, 973–984 (2004).

    Article 

    Google Scholar 

  • 23.

    Godfray, H. C. J. & Godfray, H. C. J. Parasitoids: Behavioral and Evolutionary Ecology Vol. 67 (Princeton University Press, 1994).

    Book 

    Google Scholar 

  • 24.

    Harvey, J. A., Poelman, E. H. & Tanaka, T. Intrinsic inter-and intraspecific competition in parasitoid wasps. Annu. Rev. Entomol. 58, 333–351 (2013).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Peri, E., Cusumano, A., Amodeo, V., Wajnberg, E. & Colazza, S. Intraguild interactions between two egg parasitoids of a true bug in semi-field and field conditions. PLoS ONE 9(6), e99876. https://doi.org/10.1371/journal.pone.0099876 (2014).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 26.

    Bruzzone, O. A., Logarzo, G. A., Aguirre, M. B. & Virla, E. G. Intra-host interspecific larval parasitoid competition solved using modelling and bayesian statistics. Ecol. Modell. 385, 114–123 (2018).

    Article 

    Google Scholar 

  • 27.

    Triapitsyn, S. V. et al. Complex of primary and secondary parasitoids (Hymenoptera: Encyrtidae and Signiphoridae) of Hypogeococcus spp. mealybugs (Hemiptera: Pseudococcidae) in the New World. Florida Entomol. 101, 411–434. https://doi.org/10.1653/024.101.0320 (2018).

    Article 

    Google Scholar 

  • 28.

    Aguirre, M. B. et al. Analysis of biological traits of Anagyrus cachamai and Anagyrus lapachosus to assess their potential as biological control candidate agents against Harrisia cactus mealybug pest in Puerto Rico. Biocontrol 64, 539–551. https://doi.org/10.1007/s10526-019-09956-y (2019).

    CAS 
    Article 

    Google Scholar 

  • 29.

    Poveda-Martínez, D. et al. Species complex diversification by host plant use in an herbivorous insect: The source of Puerto Rican cactus mealybug pest and implications for biological control. Ecol. Evol. 10, 10463–10480. https://doi.org/10.1002/ece3.6702 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 30.

    Poveda-Martínez, D. et al. Untangling the Hypogeococcus pungens species complex (Hemiptera: Pseudococcidae) for Argentina, Australia, and Puerto Rico based on host plant associations and genetic evidence. PLoS ONE 14(7), e0220366. https://doi.org/10.1371/journal.pone.0220366 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 31.

    Thurstone, L. L. A law of comparative judgment. Psychol. Rev. 34, 273 (1927).

    Article 

    Google Scholar 

  • 32.

    Bradley, R. A. & Terry, M. E. Rank analysis of incomplete block designs: I. The method of paired comparisons. Biometrika 39, 324–345. https://doi.org/10.2307/2334029 (1952).

    MathSciNet 
    Article 
    MATH 

    Google Scholar 

  • 33.

    Gelman, A., Carlin, J. B., Stern, H. S. & Rubin, D. B. Bayesian data analysis. In Texts Stat. Sci. 2nd ed, 661 (CRC Press, 2003).

  • 34.

    Stevens, S. S. On the Theory of Scales of Measurement, vol. 103, 677–680 (1946).

  • 35.

    Patil, A., Huard, D. & Fonnesbeck, C. J. PyMC: Bayesian stochastic modelling in Python. J. Stat. Softw. 35, 1 (2010).

    Article 

    Google Scholar 

  • 36.

    Zwölfer, H. The structure and effect of parasite complexes attacking phytophagous host insects. In Proc. Adv. Study Inst. Dyn. Numbers Popul. 405–418 (1971).

  • 37.

    Zwölfer, H. Strategies and counterstrategies in insect population systems competing for space and food in flower headsand plant galls. Fortschr. Zool. 25(2/3), 331–353 (1979).

    Google Scholar 

  • 38.

    Vance, R. R. The stable coexistence of two competitors for one resource. Am. Nat. 126, 72–86 (1985).

    Article 

    Google Scholar 

  • 39.

    Fellers, J. H. Interference and exploitation in a guild of woodland ants. Ecology 68, 1466–1478 (1987).

    Article 

    Google Scholar 

  • 40.

    Cusumano, A., Peri, E., Vinson, S. B. & Colazza, S. Intraguild interactions between two egg parasitoids exploring host patches. Biocontrol 56, 173–184 (2011).

    Article 

    Google Scholar 

  • 41.

    Mizutani, N. Interspecific larval competition among three egg parasitoid species on the host, Riptortus clavatus (Thunberg) (Heteroptera: Alydidae). Proc. Assoc. Plant Prot. Kyushu 40, 106–110 (1994).

    Article 

    Google Scholar 

  • 42.

    Weber, C. A., Smilanick, J. M., Ehler, L. E. & Zalom, F. G. Ovipositional behavior and host discrimination in three scelionid egg parasitoids of stink bugs. Biol. Control 6, 245–252 (1996).

    Article 

    Google Scholar 

  • 43.

    Alim, M. A. & Lim, U. T. Interspecific larval competition between two egg parasitoids in refrigerated host eggs of Riptortus pedestris (Hemiptera: Alydidae). Biocontrol Sci. Technol. 21, 395–407 (2011).

    Article 

    Google Scholar 

  • 44.

    De Moraes, C. M. & Lewis, W. J. Analyses of two parasitoids with convergent foraging strategies. J. Insect Behav. 12, 571–583 (1999).

    Article 

    Google Scholar 

  • 45.

    Mackauer, M. Host discrimination and larval competition in solitary endoparasitoids. Crit. Issues Biol. Control, Intercept, Andover, Hants, UK. xvii + 330 pp (1990).

  • 46.

    Strand, M. R. & Godfray, H. C. J. Superparasitism and ovicide in parasitic Hymenoptera: Theory and a case study of the ectoparasitoid Bracon hebetor. Behav. Ecol. Sociobiol. 24, 421–432 (1989).

    Article 

    Google Scholar 

  • 47.

    Abram, P. K., Brodeur, J., Urbaneja, A. & Tena, A. Nonreproductive effects of insect parasitoids on their hosts. Annu. Rev. Entomol. 64, 259–276 (2019).

    CAS 
    Article 

    Google Scholar 

  • 48.

    Abram, P. K., Brodeur, J., Burte, V. & Boivin, G. Parasitoid-induced host egg abortion: An underappreciated component of biological control services provided by egg parasitoids. Biol. Control 98, 52–60 (2016).

    Article 

    Google Scholar 

  • 49.

    Abram, P. K., Gariepy, T. D., Boivin, G. & Brodeur, J. An invasive stink bug as an evolutionary trap for an indigenous egg parasitoid. Biol. Invasions 16, 1387–1395 (2014).

    Article 

    Google Scholar 

  • 50.

    Steiner, A. L. Stinging behaviour of solitary wasps. In Venoms of the Hymenoptera. Biochemical, Pharmacological and Behavioural Aspects (ed Piek, T.) 63–148 (Academic Press, London, 1986) https://doi.org/10.1016/b978-0-12-554770-3.50008-5.

  • 51.

    Feng, Y., Wratten, S., Sandhu, H. & Keller, M. Interspecific competition between two generalist parasitoids that attack the leafroller Epiphyas postvittana (Lepidoptera: Tortricidae). Bull. Entomol. Res. 105, 426–433 (2015).

    CAS 
    Article 

    Google Scholar 

  • 52.

    De Moraes, C. M. & Mescher, M. C. Intrinsic competition between larval parasitoids with different degrees of host specificity. Ecol. Entomol. 30, 564–570 (2005).

    Article 

    Google Scholar 

  • 53.

    Desneux, N., Barta, R. J., Hoelmer, K. A., Hopper, K. R. & Heimpel, G. E. Multifaceted determinants of host specificity in an aphid parasitoid. Oecologia 160, 387–398 (2009).

    ADS 
    Article 

    Google Scholar 

  • 54.

    Brodeur, J. & Boivin, G. Functional ecology of immature parasitoids. Annu. Rev. Entomol. 49, 27–49 (2004).

    CAS 
    Article 

    Google Scholar 

  • 55.

    Rogers, D. Random search and insect population models. J. Anim. Ecol. 41, 369–383 (1972).

    Article 

    Google Scholar 

  • 56.

    Holling, C. S. Some characteristics of simple types of predation and parasitism. Can. Entomol. 91, 385–398. https://doi.org/10.4039/Ent91385-7 (1959).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Engineered yeast could expand biofuels’ reach

    Insights into rumen microbial biosynthetic gene cluster diversity through genome-resolved metagenomics