Arim, M. & Marquet, P. A. Intraguild predation: A widespread interaction related to species biology. Ecol. Lett. 7, 557–564. https://doi.org/10.1111/j.1461-0248.2004.00613.x (2004).
Google Scholar
Polis, G. A., Myers, C. A. & Holt, R. D. The ecology and evolution of intraguild predation: Potential competitors that eat each other. Annu. Rev. Ecol. Syst. 20, 297–330. https://doi.org/10.1146/annurev.es.20.110189.001501 (1989).
Google Scholar
Rosenheim, J. A., Kaya, H. K., Ehler, L. E., Marois, J. J. & Jaffee, B. A. Intraguild predation among biological-control agents: Theory and evidence. Biol. Control 5, 303–335. https://doi.org/10.1006/bcon.1995.1038 (1995).
Google Scholar
Rosenheim, J. A. & Harmon, J. P. The influence of intraguild predation on the suppression of a shared prey population: An empirical reassessment. In Trophic and Guild in Biological Interactions Control (eds Brodeur, J. & Boivin, G.) 1–20 (Springer, 2006) https://doi.org/10.1007/1-4020-4767-3_1.
Google Scholar
Fonseca, M. M. et al. How to evaluate the potential occurrence of intraguild predation. Exp. Appl. Acarol. 72, 103–114. https://doi.org/10.1007/s10493-017-0142-x (2017).
Google Scholar
Ferguson, K. I. & Stiling, P. Non-additive effects of multiple natural enemies on aphid populations. Oecologia 108, 375–379 (1996).
Google Scholar
Hindayana, D., Meyhöfer, R., Scholz, D. & Poehling, H.-M. Intraguild predation among the hoverfly Episyrphus balteatus de Geer (Diptera: Syrphidae) and other aphidophagous predators. Biol. Control 20, 236–246 (2001).
Google Scholar
Denoth, M., Frid, L. & Myers, J. H. Multiple agents in biological control: Improving the odds?. Biol. Control 24, 20–30. https://doi.org/10.1016/S1049-9644(02)00002-6 (2002).
Google Scholar
Muştu, M., Kilinçer, N., Ülgentürk, S. & Kaydan, M. B. Feeding behavior of Cryptolaemus montrouzieri on mealybugs parasitized by Anagyrus pseudococci. Phytoparasitica 36, 360–367 (2008).
Google Scholar
Lucas, E. Intraguild predation among aphidophagous predators. Eur. J. Entomol. 102, 351–364 (2005).
Muştu, M. & Kilinçer, N. Intraguild predation of Planococcus ficus parasitoids Anagyrus pseudococci and Leptomastix dactylopii by Nephus kreissli. Biocontrol Sci. Technol. 24, 257–269. https://doi.org/10.1080/09583157.2013.856866 (2014).
Google Scholar
Diehl, S. & Feißel, M. Effects of enrichment on three-level food chains with omnivory. Am. Nat. 155, 200–218 (2000).
Google Scholar
Holt, R. D. & Polis, G. A. A theoretical framework for intraguild predation. Am. Nat. 149, 745–764 (1997).
Google Scholar
Kuijper, L. D. J., Kooi, B. W., Zonneveld, C. & Kooijman, S. A. L. M. Omnivory and food web dynamics. Ecol. Modell. 163, 19–32 (2003).
Google Scholar
Morin, P. Productivity, intraguild predation, and population dynamics in experimental food webs. Ecology 80, 752–760 (1999).
Google Scholar
Mylius, S. D., Klumpers, K., de Roos, A. M. & Persson, L. Impact of intraguild predation and stage structure on simple communities along a productivity gradient. Am. Nat. 158, 259–276 (2001).
Google Scholar
Polis, G. A. & Holt, R. D. Intraguild predation: The dynamics of complex trophic interactions. Trends Ecol. Evol. 7, 151–154 (1992).
Google Scholar
Janssen, A. et al. Intraguild predation usually does not disrupt biological control. In Trophic and Guild in Biological Interactions Control (eds Brodeur, J. & Boivin, G.) 21–44 (Springer, 2006) https://doi.org/10.1007/1-4020-4767-3_2.
Google Scholar
Skalski, G. T. & Gilliam, J. F. Functional responses with predator interference: Viable alternatives to the Holling type II model. Ecology 82, 3083–3092 (2001).
Google Scholar
de Villemereuil, P. B. & López-Sepulcre, A. Consumer functional responses under intra- and inter-specific interference competition. Ecol. Modell. 222, 419–426. https://doi.org/10.1016/j.ecolmodel.2010.10.011 (2011).
Google Scholar
Sutherland, W. J. From Individual Behaviour to Population Ecology (Oxford Series in Ecology and Evolution, 1996).
Pedersen, B. S. & Mills, N. J. Single vs. multiple introduction in biological control: The roles of parasitoid efficiency, antagonism and niche overlap. J. Appl. Ecol. 41, 973–984 (2004).
Google Scholar
Godfray, H. C. J. & Godfray, H. C. J. Parasitoids: Behavioral and Evolutionary Ecology Vol. 67 (Princeton University Press, 1994).
Google Scholar
Harvey, J. A., Poelman, E. H. & Tanaka, T. Intrinsic inter-and intraspecific competition in parasitoid wasps. Annu. Rev. Entomol. 58, 333–351 (2013).
Google Scholar
Peri, E., Cusumano, A., Amodeo, V., Wajnberg, E. & Colazza, S. Intraguild interactions between two egg parasitoids of a true bug in semi-field and field conditions. PLoS ONE 9(6), e99876. https://doi.org/10.1371/journal.pone.0099876 (2014).
Google Scholar
Bruzzone, O. A., Logarzo, G. A., Aguirre, M. B. & Virla, E. G. Intra-host interspecific larval parasitoid competition solved using modelling and bayesian statistics. Ecol. Modell. 385, 114–123 (2018).
Google Scholar
Triapitsyn, S. V. et al. Complex of primary and secondary parasitoids (Hymenoptera: Encyrtidae and Signiphoridae) of Hypogeococcus spp. mealybugs (Hemiptera: Pseudococcidae) in the New World. Florida Entomol. 101, 411–434. https://doi.org/10.1653/024.101.0320 (2018).
Google Scholar
Aguirre, M. B. et al. Analysis of biological traits of Anagyrus cachamai and Anagyrus lapachosus to assess their potential as biological control candidate agents against Harrisia cactus mealybug pest in Puerto Rico. Biocontrol 64, 539–551. https://doi.org/10.1007/s10526-019-09956-y (2019).
Google Scholar
Poveda-Martínez, D. et al. Species complex diversification by host plant use in an herbivorous insect: The source of Puerto Rican cactus mealybug pest and implications for biological control. Ecol. Evol. 10, 10463–10480. https://doi.org/10.1002/ece3.6702 (2020).
Google Scholar
Poveda-Martínez, D. et al. Untangling the Hypogeococcus pungens species complex (Hemiptera: Pseudococcidae) for Argentina, Australia, and Puerto Rico based on host plant associations and genetic evidence. PLoS ONE 14(7), e0220366. https://doi.org/10.1371/journal.pone.0220366 (2019).
Google Scholar
Thurstone, L. L. A law of comparative judgment. Psychol. Rev. 34, 273 (1927).
Google Scholar
Bradley, R. A. & Terry, M. E. Rank analysis of incomplete block designs: I. The method of paired comparisons. Biometrika 39, 324–345. https://doi.org/10.2307/2334029 (1952).
Google Scholar
Gelman, A., Carlin, J. B., Stern, H. S. & Rubin, D. B. Bayesian data analysis. In Texts Stat. Sci. 2nd ed, 661 (CRC Press, 2003).
Stevens, S. S. On the Theory of Scales of Measurement, vol. 103, 677–680 (1946).
Patil, A., Huard, D. & Fonnesbeck, C. J. PyMC: Bayesian stochastic modelling in Python. J. Stat. Softw. 35, 1 (2010).
Google Scholar
Zwölfer, H. The structure and effect of parasite complexes attacking phytophagous host insects. In Proc. Adv. Study Inst. Dyn. Numbers Popul. 405–418 (1971).
Zwölfer, H. Strategies and counterstrategies in insect population systems competing for space and food in flower headsand plant galls. Fortschr. Zool. 25(2/3), 331–353 (1979).
Vance, R. R. The stable coexistence of two competitors for one resource. Am. Nat. 126, 72–86 (1985).
Google Scholar
Fellers, J. H. Interference and exploitation in a guild of woodland ants. Ecology 68, 1466–1478 (1987).
Google Scholar
Cusumano, A., Peri, E., Vinson, S. B. & Colazza, S. Intraguild interactions between two egg parasitoids exploring host patches. Biocontrol 56, 173–184 (2011).
Google Scholar
Mizutani, N. Interspecific larval competition among three egg parasitoid species on the host, Riptortus clavatus (Thunberg) (Heteroptera: Alydidae). Proc. Assoc. Plant Prot. Kyushu 40, 106–110 (1994).
Google Scholar
Weber, C. A., Smilanick, J. M., Ehler, L. E. & Zalom, F. G. Ovipositional behavior and host discrimination in three scelionid egg parasitoids of stink bugs. Biol. Control 6, 245–252 (1996).
Google Scholar
Alim, M. A. & Lim, U. T. Interspecific larval competition between two egg parasitoids in refrigerated host eggs of Riptortus pedestris (Hemiptera: Alydidae). Biocontrol Sci. Technol. 21, 395–407 (2011).
Google Scholar
De Moraes, C. M. & Lewis, W. J. Analyses of two parasitoids with convergent foraging strategies. J. Insect Behav. 12, 571–583 (1999).
Google Scholar
Mackauer, M. Host discrimination and larval competition in solitary endoparasitoids. Crit. Issues Biol. Control, Intercept, Andover, Hants, UK. xvii + 330 pp (1990).
Strand, M. R. & Godfray, H. C. J. Superparasitism and ovicide in parasitic Hymenoptera: Theory and a case study of the ectoparasitoid Bracon hebetor. Behav. Ecol. Sociobiol. 24, 421–432 (1989).
Google Scholar
Abram, P. K., Brodeur, J., Urbaneja, A. & Tena, A. Nonreproductive effects of insect parasitoids on their hosts. Annu. Rev. Entomol. 64, 259–276 (2019).
Google Scholar
Abram, P. K., Brodeur, J., Burte, V. & Boivin, G. Parasitoid-induced host egg abortion: An underappreciated component of biological control services provided by egg parasitoids. Biol. Control 98, 52–60 (2016).
Google Scholar
Abram, P. K., Gariepy, T. D., Boivin, G. & Brodeur, J. An invasive stink bug as an evolutionary trap for an indigenous egg parasitoid. Biol. Invasions 16, 1387–1395 (2014).
Google Scholar
Steiner, A. L. Stinging behaviour of solitary wasps. In Venoms of the Hymenoptera. Biochemical, Pharmacological and Behavioural Aspects (ed Piek, T.) 63–148 (Academic Press, London, 1986) https://doi.org/10.1016/b978-0-12-554770-3.50008-5.
Feng, Y., Wratten, S., Sandhu, H. & Keller, M. Interspecific competition between two generalist parasitoids that attack the leafroller Epiphyas postvittana (Lepidoptera: Tortricidae). Bull. Entomol. Res. 105, 426–433 (2015).
Google Scholar
De Moraes, C. M. & Mescher, M. C. Intrinsic competition between larval parasitoids with different degrees of host specificity. Ecol. Entomol. 30, 564–570 (2005).
Google Scholar
Desneux, N., Barta, R. J., Hoelmer, K. A., Hopper, K. R. & Heimpel, G. E. Multifaceted determinants of host specificity in an aphid parasitoid. Oecologia 160, 387–398 (2009).
Google Scholar
Brodeur, J. & Boivin, G. Functional ecology of immature parasitoids. Annu. Rev. Entomol. 49, 27–49 (2004).
Google Scholar
Rogers, D. Random search and insect population models. J. Anim. Ecol. 41, 369–383 (1972).
Google Scholar
Holling, C. S. Some characteristics of simple types of predation and parasitism. Can. Entomol. 91, 385–398. https://doi.org/10.4039/Ent91385-7 (1959).
Google Scholar
Source: Ecology - nature.com