in

Influence of historical changes in tropical reef habitat on the diversification of coral reef fishes

[adace-ad id="91168"]
  • 1.

    Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived?. Nature 471, 51–57 (2011).

    CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 

  • 2.

    Zaffos, A., Finnegan, S. & Peters, S. E. Plate tectonic regulation of global marine animal diversity. Proc. Natl. Acad. Sci. 114, 5653–5658 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 3.

    Claramunt, S. & Cracraft, J. A new time tree reveals Earth historys imprint on the evolution of modern birds. Sci. Adv. 1, e1501005 (2015).

    PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 

  • 4.

    Leprieur, F., Descombes, P., Gaboriau, T., Cowman, P. F. & Parravicini, V. Plate tectonics drive tropical reef biodiversity dynamics. Nat. Commun. 7, 11461 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 5.

    Ficetola, G. F., Mazel, F. & Thuiller, W. Global determinants of zoogeographical boundaries. Nat. Ecol. Evol. 1, 0089 (2017).

    Article 

    Google Scholar 

  • 6.

    Mazel, F. et al. Global patterns of β-diversity along the phylogenetic time-scale: The role of climate and plate tectonics. Glob. Ecol. Biogeogr. 26, 1211–1221 (2017).

    Article 

    Google Scholar 

  • 7.

    Hofreiter, M. & Stewart, J. Ecological change, range fluctuations and population dynamics during the pleistocene. Curr. Biol. 19, R584–R594 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 8.

    Pellissier, L. et al. Quaternary coral reef refugia preserved fish diversity. Science 344, 1016–1019 (2014).

    CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 

  • 9.

    Jaramillo, C. et al. Effects of rapid global warming at the paleocene-eocene boundary on neotropical vegetation. Science 330, 957–961 (2010).

    CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 

  • 10.

    Svenning, J.-C., Eiserhardt, W. L., Normand, S., Ordonez, A. & Sandel, B. The influence of paleoclimate on present-day patterns in biodiversity and ecosystems. Annu. Rev. Ecol. Evol. Syst. 46, 551–572 (2015).

    Article 

    Google Scholar 

  • 11.

    Steeman, M. E. et al. Radiation of extant cetaceans driven by restructuring of the oceans. Syst. Biol. 58, 573–585 (2009).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 12.

    Antonelli, A. & Sanmartín, I. Mass Extinction, gradual cooling, or rapid radiation? reconstructing the spatiotemporal evolution of the ancient angiosperm genus hedyosmum (Chloranthaceae) using empirical and simulated approaches. Syst. Biol. 60, 596–615 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 13.

    Nee, S., May, R. M. & Harvey, P. H. The reconstructed evolutionary process. Philos. Trans. R. Soc. Lond. B 344, 305–311 (1994).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 14.

    Morlon, H., Parsons, T. L. & Plotkin, J. B. From the cover: Reconciling molecular phylogenies with the fossil record. Proc. Natl. Acad. Sci. 108, 16327–16332 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 15.

    Condamine, F. L., Rolland, J. & Morlon, H. Macroevolutionary perspectives to environmental change. Ecol. Lett. 16, 72–85 (2013).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 16.

    Condamine, F. L. et al. Deciphering the evolution of birdwing butterflies 150 years after Alfred Russel Wallace Deciphering the evolution of birdwing butterflies 150 years after. Sci. Rep. 5, 11860 (2015).

    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 17.

    Lagomarsino, L. P., Condamine, F. L., Antonelli, A., Mulch, A. & Davis, C. C. The abiotic and biotic drivers of rapid diversification in Andean bellflowers (Campanulaceae). New Phytol. 210, 1430–1442 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 18.

    Rolland, J. & Condamine, F. L. The contribution of temperature and continental fragmentation to amphibian diversification. J. Biogeogr. 46, 1857–1873 (2019).

    Article 

    Google Scholar 

  • 19.

    Gaboriau, T. et al. Ecological constraints coupled with deep-time habitat dynamics predict the latitudinal diversity gradient in reef fishes. Proc. R. Soc. B Biol. Sci. 286, 20191506 (2019).

    Article 

    Google Scholar 

  • 20.

    Descombes, P. et al. Linking species diversification to palaeo-environmental changes: A process-based modelling approach. Glob. Ecol. Biogeogr. 00, 1–12 (2017).

    Google Scholar 

  • 21.

    Rangel, T. F. et al. Modeling the ecology and evolution of biodiversity: Biogeographical cradles, museums, and graves. Science 361, 5452 (2018).

    Article 
    CAS 

    Google Scholar 

  • 22.

    Pontarp, M. et al. The latitudinal diversity gradient: Novel understanding through mechanistic eco-evolutionary models. Trends Ecol. Evol. 34, 211–223 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 23.

    Cowman, P. F. Historical factors that have shaped the evolution of tropical reef fishes: A review of phylogenies, biogeography, and remaining questions. Front. Genet. 5, 1–15 (2014).

    Article 

    Google Scholar 

  • 24.

    Bellwood, D. R. et al. Evolutionary history of the butterflyfishes (f: Chaetodontidae) and the rise of coral feeding fishes. J. Evol. Biol. 23, 335–349 (2010).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 25.

    Cowman, P. F. & Bellwood, D. R. Coral reefs as drivers of cladogenesis: Expanding coral reefs, cryptic extinction events, and the development of biodiversity hotspots. J. Evol. Biol. 24, 2543–2562 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 26.

    Sorenson, L., Santini, F., Carnevale, G. & Alfaro, M. E. A multi-locus timetree of surgeonfishes (Acanthuridae, Percomorpha), with revised family taxonomy. Mol. Phylogenet. Evol. 68, 150–160 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 27.

    Dornburg, A., Moore, J., Beaulieu, J. M., Eytan, R. I. & Near, T. J. The impact of shifts in marine biodiversity hotspots on patterns of range evolution: Evidence from the Holocentridae (squirrelfishes and soldierfishes). Evolution 69, 146–161 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 28.

    Cowman, P. F. & Bellwood, D. R. The historical biogeography of coral reef fishes: Global patterns of origination and dispersal. J. Biogeogr. 40, 209–224 (2013).

    Article 

    Google Scholar 

  • 29.

    Lohman, D. J. et al. Biogeography of the Indo-Australian archipelago. Annu. Rev. Ecol. Evol. Syst. 42, 205–226 (2011).

    Article 

    Google Scholar 

  • 30.

    Gaboriau, T., Leprieur, F., Mouillot, D. & Hubert, N. Influence of the geography of speciation on current patterns of coral reef fish biodiversity across the Indo-Pacific. Ecography 41, 1295–1306 (2017).

    Article 

    Google Scholar 

  • 31.

    McManus, J. W. Marine speciation, tectonics and sea- level changes in Southeast Asia. Proc. Fifth Int. Coral Reef 4, 133–138 (1985).

    Google Scholar 

  • 32.

    Potts, D. C. Sea-level fluctuations and speciation in Scleractinia. Proc. Fifth Int. Coral Reef 4, 51–62 (1985).

    Google Scholar 

  • 33.

    Hou, Z. & Li, S. Tethyan changes shaped aquatic diversification. Biol. Rev. https://doi.org/10.1111/brv.12376 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 34.

    Stadler, T. Mammalian phylogeny reveals recent diversification rate shifts. Proc. Natl. Acad. Sci. USA 108, 6187–6192 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 35.

    Bellwood, D. R. & Wainwright, P. C. The history and biogeography of Fishes on Coral Reefs. in Coral Reef Fishes, Dynamics and Diversity in a Complex Ecosystem, 5–32 (2002).

  • 36.

    Williams, S. T. & Duda, T. F. Did tectonic activity stimulate Oligo-Miocene speciation in the Indo-West Pacific?. Evolution 62, 1618–1634 (2008).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 37.

    Renema, W. et al. Hopping hotspots: Global shifts in marine biodiversity. Science 321, 654–657 (2008).

    CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 

  • 38.

    Tea, Y.-K. et al. Phylogenomic analysis of concatenated ultraconserved elements reveals the recent evolutionary radiation of the fairy wrasses (teleostei: labridae: cirrhilabrus). Syst. Biol. 1, 1–12 (2021).

    Google Scholar 

  • 39.

    Hall, R. Southeast Asia’s changing palaeogeography. Blumea J. Plant Taxon. Plant Geogr. 54, 148–161 (2009).

    Article 

    Google Scholar 

  • 40.

    Keith, S. A., Baird, A. H., Hughes, T. P., Madin, J. S. & Connolly, S. R. Faunal breaks and species composition of Indo-Pacific corals: The role of plate tectonics, environment and habitat distribution. Proc. Biol. Sci. 280, 20130818 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 41.

    Cowman, P. F. & Bellwood, D. R. Vicariance across major marine biogeographic barriers: Temporal concordance and the relative intensity of hard versus soft barriers. Proc. Biol. Sci. 280, 20131541 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 42.

    Price, S. A., Claverie, T., Near, T. J. & Wainwright, P. C. Phylogenetic insights into the history and diversification of fishes on reefs. Coral Reefs 34, 997–1009 (2015).

    Article 
    ADS 

    Google Scholar 

  • 43.

    Bellwood, D. R., Goatley, C. H. R. & Bellwood, O. The evolution of fishes and corals on reefs: Form, function and interdependence. Biol. Rev. 92, 878–901 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 44.

    Bowen, B. W., Rocha, L. A., Toonen, R. J. & Karl, S. A. The origins of tropical marine biodiversity. Trends Ecol. Evol. 28, 359–366 (2013).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 45.

    Price, S. A., Tavera, J. J., Near, T. J. & Wainwright, P. C. Elevated rates of morphological and functional diversification in reef-dwelling haemulid fishes. Evolution 67, 417–428 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 46.

    Kiessling, W., Simpson, C., Beck, B., Mewis, H. & Pandolfi, J. M. Equatorial decline of reef corals during the last Pleistocene interglacial. Proc. Natl. Acad. Sci. USA. 109, 21378–21383 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 47.

    Floeter, S. R. et al. Atlantic reef fish biogeography and evolution. J. Biogeogr. 35, 22–45 (2007).

    Google Scholar 

  • 48.

    Riginos, C., Buckley, Y. M., Blomberg, S. P. & Treml, E. A. Dispersal capacity predicts both population genetic structure and species richness in reef fishes. Am. Nat. 184, 52–64 (2014).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 49.

    Rocha, L. A. & Bowen, B. W. Speciation in coral-reef fishes. J. Fish Biol. 72, 1101–1121 (2008).

    Article 

    Google Scholar 

  • 50.

    Tedesco, P. A., Paradis, E., EvEque, C. L. & Hugueny, B. Explaining global-scale diversification patterns in actinopterygian fishes. J. Biogeogr. 44, 773–783 (2016).

    Article 

    Google Scholar 

  • 51.

    Rosenzweig, M. L. Species Diversity in Space and Time (Springer, 1995).

    Book 

    Google Scholar 

  • 52.

    Kisel, Y. & Barraclough, T. G. Speciation has a spatial scale that depends on levels of gene flow. Am. Nat. 175, 316–334 (2010).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 53.

    Fine, P. V. A. & Ree, R. H. Evidence for a time-integrated species-area effect on the latitudinal gradient in tree diversity. Am. Nat. 168, 796–804 (2006).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 54.

    Jetz, W. & Fine, P. V. A. Global gradients in vertebrate diversity predicted by historical area-productivity dynamics and contemporary environment. PLoS Biol. 10, e1001292 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 55.

    Konow, N., Price, S., Abom, R., Bellwood, D. & Wainwright, P. Decoupled diversification dynamics of feeding morphology following a major functional innovation in marine butterflyfishes. Proc. Biol. Sci. 284, 20170906 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 56.

    Clements, K. D., German, D. P., Piché, J., Tribollet, A. & Choat, J. H. Integrating ecological roles and trophic diversification on coral reefs: Multiple lines of evidence identify parrotfishes as microphages. Biol. J. Linn. Soc. 120, 729–751 (2017).

    Google Scholar 

  • 57.

    Lobato, F. L. et al. Diet and diversification in the evolution of coral reef fishes. PLoS ONE 9, e102094 (2014).

    PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 

  • 58.

    Siqueira, A. C., Morais, R. A., Bellwood, D. R. & Cowman, P. F. Trophic innovations fuel reef fish diversification. Nat. Commun. 11, 1–11 (2020).

    Article 
    CAS 

    Google Scholar 

  • 59.

    Louca, S. & Pennell, M. W. Extant timetrees are consistent with a myriad of diversification histories. Nature 580, 502–505 (2020).

    CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 

  • 60.

    Morlon, H., Hartig, F. & Robin, S. Prior hypotheses or regularization allow inference of diversification histories from extant timetrees. bioRxiv (2020).

  • 61.

    McCord, C. L. & Westneat, M. W. Phylogenetic relationships and the evolution of BMP4 in triggerfishes and filefishes (Balistoidea). Mol. Phylogenet. Evol. 94, 397–409 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 62.

    Santini, F. & Carnevale, G. First multilocus and densely sampled timetree of trevallies, pompanos and allies (Carangoidei, Percomorpha) suggests a Cretaceous origin and Eocene radiation of a major clade of piscivores. Mol. Phylogenet. Evol. 83, 33–39 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 63.

    Santini, F., Carnevale, G. & Sorenson, L. First multi-locus timetree of seabreams and porgies (Percomorpha: Sparidae). Ital. J. Zool. 81, 55–71 (2014).

    Article 

    Google Scholar 

  • 64.

    Müller, R. D., Sdrolias, M., Gaina, C., Steinberger, B. & Heine, C. Long-term sea-level fluctuations driven by ocean basin dynamics. Science 319, 1357–1362 (2008).

    PubMed 
    Article 
    ADS 
    CAS 
    PubMed Central 

    Google Scholar 

  • 65.

    Heine, C., Yeo, L. G. & Müller, R. D. Evaluating global paleoshoreline models for the Cretaceous and Cenozoic. Aust. J. Earth Sci. 62, 275–287 (2015).

    CAS 

    Google Scholar 

  • 66.

    Kleypas, J. A. & Mcmanus, J. W. Environmental Limits to Coral Reef Development : Where Do We Draw the Line ?. Am. Zool. 39, 146–159 (1999).

    Article 

    Google Scholar 

  • 67.

    Bugayevskiy, L. M. & Snyder, J. P. Map Projections: A Reference Manual (Taylor & Francis, London, 1995).

    Google Scholar 

  • 68.

    Chang, J., Rabosky, D. L. & Alfaro, M. E. Estimating diversification rates on incompletely sampled phylogenies: Theoretical concerns and practical solutions. Syst. Biol. 69, 602–611 (2020).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 69.

    Morlon, H. et al. RPANDA: An R package for macroevolutionary analyses on phylogenetic trees. Methods Ecol. Evol. 7, 589–597 (2016).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Divergent abiotic spectral pathways unravel pathogen stress signals across species

    How diet affects tumors