in

Influence of intrinsic and extrinsic attributes on neonate survival in an invasive large mammal

  • 1.

    Sæther, B.-E. Environmental stochasticity and population dynamics of large herbivores: A search for mechanisms. Trends Ecol. Evol. 12, 143–149 (1997).

    PubMed 
    Article 

    Google Scholar 

  • 2.

    Gaillard, J.-M., Festa-Bianchet, M. & Yoccoz, N. G. Population dynamics of large herbivores: Variable recruitment with constant adult survival. Trends Ecol. Evol. 13, 58–63 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 3.

    Coulson, T. et al. Estimating individual contributions to population growth: Evolutionary fitness in ecological time. Proc. R. Soc. B 273, 547–555 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 4.

    Pelletier, F., Clutton-Brock, T., Pemberton, J., Tuljapurkar, S. & Coulson, T. The evolutionary demography of ecological change: Linking trait variation and population growth. Science 315, 1571–1574 (2007).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 5.

    Pettorelli, N., Coulson, T., Durant, S. M. & Gaillard, J.-M. Predation, individual variability and vertebrate population dynamics. Oecologia 167, 305 (2011).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • 6.

    Forchhammer, M. C., Clutton-Brock, T. H., Lindström, J. & Albon, S. D. Climate and population density induce long-term cohort variation in a northern ungulate. J. Anim. Ecol. 70, 721–729 (2001).

    Article 

    Google Scholar 

  • 7.

    Owen-Smith, N., Mason, D. R. & Ogutu, J. O. Correlates of survival rates for 10 African ungulate populations: Density, rainfall and predation. J. Anim. Ecol. 74, 774–788 (2005).

    Article 

    Google Scholar 

  • 8.

    Gaillard, J.-M., Festa-Bianchet, M., Yoccoz, N., Loison, A. & Toigo, C. Temporal variation in fitness components and population dynamics of large herbivores. Annu. Rev. Ecol. Syst. 31, 367–393 (2000).

    Article 

    Google Scholar 

  • 9.

    Griffin, K. A. et al. Neonatal mortality of elk driven by climate, predator phenology and predator community composition. J. Anim. Ecol. 80, 1246–1257 (2011).

    PubMed 
    Article 

    Google Scholar 

  • 10.

    Kilgo, J. C., Vukovich, M., Scott Ray, H., Shaw, C. E. & Ruth, C. Coyote removal, understory cover, and survival of white-tailed deer neonates. J. Wildl. Manag. 78, 1261–1271 (2014).

    Article 

    Google Scholar 

  • 11.

    Coltman, D. W., Bowen, W. D. & Wright, J. M. Birth weight and neonatal survival of harbour seal pups are positively correlated with genetic variation measured by microsatellites. Proc. R. Soc. B 265, 803–809 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 12.

    Kolbe, J. & Janzen, F. The influence of propagule size and maternal nest-site selection on survival and behaviour of neonate turtles. Funct. Ecol. 15, 772–781 (2001).

    Article 

    Google Scholar 

  • 13.

    Kissner, K. J. & Weatherhead, P. J. Phenotypic effects on survival of neonatal northern watersnakes Nerodia sipedon. J. Anim. Ecol. 74, 259–265 (2005).

    Article 

    Google Scholar 

  • 14.

    Carstensen, M., Delgiudice, G. D., Sampson, B. A. & Kuehn, D. W. Survival, birth characteristics, and cause-specific mortality of white-tailed deer neonates. J. Wildl. Manag. 73, 175–183 (2009).

    Article 

    Google Scholar 

  • 15.

    Guttery, M. R. et al. Effects of landscape-scale environmental variation on greater sage-grouse chick survival. PLoS One 8, e65582 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 16.

    Duquette, J. F., Belant, J. L., Svoboda, N. J., Beyer, D. E. Jr. & Lederle, P. E. Effects of maternal nutrition, resource use and multi-predator risk on neonatal white-tailed deer survival. PLoS One 9, 1–10 (2014).

    Article 

    Google Scholar 

  • 17.

    Pimentel, D. In Managing Vertebrate Invasive Species: Proceedings of an International Symposium. (eds. Pitt, W.C. et al.) 2–8 (USDA/APHIS/WS, 2007).

  • 18.

    Pitt, W. C., Beasley, J. & Witmer, G. W. Ecology and Management of Terrestrial Vertebrate Invasive Species in the United States. 7–31 (CRC Press, 2018).

  • 19.

    Strickland, B. K., Smith, M. D., Smith, A. L. Wild pig damage to resources. In Invasive Wild Pigs in North America: Ecology, Impacts, and Management (eds. Vercauteren, K. C. et al.) 143–174 (CRC Press, 2020).

  • 20.

    Lowe, S., Browne, M., Boudjelas, S. & De Poorter, M. In 100 of the World’s Worst Invasive Alien Species: A Selection from the Global Invasive Species Database. Vol. 12 (Invasive Species Specialist Group, Species Survival Commission, World Conservation Union (IUCN), 2000).

  • 21.

    Keiter, D. A., Mayer, J. J. & Beasley, J. C. What is in a “common” name? A call for consistent terminology for nonnative Sus scrofa. Wild. Soc. Bull. 40, 384–387 (2016).

    Article 

    Google Scholar 

  • 22.

    Smyser, T. J. et al. Mixed ancestry from wild and domestic lineages contributes to the rapid expansion of invasive feral swine. Mol. Ecol. 29, 1103–1119 (2020).

    PubMed 
    Article 

    Google Scholar 

  • 23.

    Bevins, S. N., Pedersen, K., Lutman, M. W., Gidlewski, T. & Deliberto, T. J. Consequences associated with the recent range expansion of nonnative feral swine. BioSci. 64, 291–299 (2014).

    Article 

    Google Scholar 

  • 24.

    Mohr, D., Cohnstaedt, L. W. & Topp, W. Wild boar and red deer affect soil nutrients and soil biota in steep oak stands of the Eifel. Soil Biol. Biochem. 37, 693–700 (2005).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Barrios-García, M. N. & Ballari, S. A. Impact of wild boar (Sus scrofa) in its introduced and native range: A review. Biol. Invasions 14, 2283–2300 (2012).

    Article 

    Google Scholar 

  • 26.

    Beasley, J. C., Ditchkoff, S. S., Mayer, J. J., Smith, M. D. & Vercauteren, K. C. Research priorities for managing invasive wild pigs in North America. J. Wildl. Manag. 82, 674–681 (2018).

    Article 

    Google Scholar 

  • 27.

    Ditchkoff, S. S. & Bodenchuk, M. J. Management of wild pigs. In Invasive Wild Pigs in North America: Ecology, Impacts, and Management (eds. Vercauteren, K. C. et al.) 175–198 (CRC Press, 2020).

  • 28.

    Bieber, C. & Ruf, T. Population dynamics in wild boar Sus scrofa: Ecology, elasticity of growth rate and implications for the management of pulsed resource consumers. J. Appl. Ecol. 42, 1203–1213 (2005).

    Article 

    Google Scholar 

  • 29.

    Hanson, L. B. et al. Effect of experimental manipulation on survival and recruitment of feral pigs. Wildl. Res. 36, 185–191 (2009).

    Article 

    Google Scholar 

  • 30.

    Keiter, D. A. et al. Effects of scale of movement, detection probability, and true population density on common methods of estimating population density. Sci. Rep. 7, 1–12 (2017).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Keiter, D. A., Kilgo, J. C., Vukovich, M. A., Cunningham, F. L. & Beasley, J. C. Development of known-fate survival monitoring techniques for juvenile wild pigs (Sus scrofa). Wildl. Res. 44, 165–173 (2017).

    Article 

    Google Scholar 

  • 32.

    Snow, N. P., Miller, R. S., Beasely, J. C. & Pepin, K. M. Wild pig population dynamics. In Invasive Wild Pigs in North America: Ecology, Impacts, and Management (eds. Vercauteren, K. C. et al.) 57–82 (CRC Press, 2020).

  • 33.

    Alonso-Spilsbury, M., Ramirez-Necoechea, R., Gonzalez-Lozano, M., Mota-Rojas, D. & Trujillo-Ortega, M. Piglet survival in early lactation: A review. J. Anim. Vet. Adv. 1, 76–86 (2007).

    Google Scholar 

  • 34.

    Baubet, E., Servanty, S. & Brandt, S. Tagging piglets at the farrowing nest in the wild: Some preliminary guidelines. Acta Sylvatica Lig. Hung. 5, 159–166 (2009).

    Google Scholar 

  • 35.

    Kerr, J. & Cameron, N. Reproductive performance of pigs selected for components of efficient lean growth. Anim. Sci. 60, 281–290 (1995).

    Article 

    Google Scholar 

  • 36.

    Van der Lende, T., KnoI, E. & Leenhouwers, J. Prenatal development asa predisposing factor for perinatal lossesin pigs. Reproduction 58, 247–261 (2001).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 37.

    Mount, L. The heat loss from new-born pigs to the floor. Res. Vet. Sci. 8, 175–186 (1967).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 38.

    Herpin, P., Damon, M. & Le Dividich, J. Development of thermoregulation and neonatal survival in pigs. Livest. Prod. Sci. 78, 25–45 (2002).

    Article 

    Google Scholar 

  • 39.

    Gaillard, J.-M., Pontier, D., Brandt, S., Jullien, J.-M. & Allaine, D. Sex differentiation in postnatal growth rate: A test in a wild boar population. Oecologia 90, 167–171 (1992).

    ADS 
    Article 

    Google Scholar 

  • 40.

    Trivers, R. L. & Willard, D. E. Natural selection of parental ability to vary the sex ratio of offspring. Science 179, 90–92 (1973).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 41.

    Clutton-Brock, T. H., Albon, S. D. & Guinness, F. E. Parental investment and sex differences in juvenile mortality in birds and mammals. Nature 313, 131–133 (1985).

    ADS 
    Article 

    Google Scholar 

  • 42.

    Theil, P. K., Nielsen, M. O., Sørensen, M. T. & Lauridsen, C. Lactation, milk and suckling. In Nutritional Physiology of Pigs: with emphasis on Danish production conditions (eds. Knudsen et al.) 1–49 (University of Copenhagen, 2012).

  • 43.

    Theil, P. K., Lauridsen, C. & Quesnel, H. Neonatal piglet survival: Impact of sow nutrition around parturition on fetal glycogen deposition and production and composition of colostrum and transient milk. Animal 8, 1021–1030 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 44.

    Mayer, J. & Brisbin Jr, I. L. Wild pigs of the Savannah River Site. Report No. SRNL-RP-2011-00295, 114 (Savannah River National Laboratory, 2012).

  • 45.

    Withey, J. C., Bloxton, T. D. & Marzluff, J. M. Effects of tagging and location error in wildlife telemetry studies. In Radio Tracking and Animal Populations. 43–75 (Academic Press, 2001).

  • 46.

    Webster, S. C. & Beasley, J. C. Influence of lure choice and survey duration on scent stations for carnivore surveys. Wildl. Soc. Bull. 43, 661–668 (2019).

    Article 

    Google Scholar 

  • 47.

    Matschke, G. H. Aging European wild hogs by dentition. J. Wildl. Manag. 31, 109–113 (1967).

    Article 

    Google Scholar 

  • 48.

    Mayer, J. J., Martin, F. D. & Brisbin, I. L. Characteristics of wild pig farrowing nests and beds in the upper Coastal Plain of South Carolina. Appl. Anim. Behav. Sci. 78, 1–17 (2002).

    Article 

    Google Scholar 

  • 49.

    Kilgo, J. C., Ray, H. S., Vukovich, M., Goode, M. J. & Ruth, C. Predation by coyotes on white-tailed deer neonates in South Carolina. J. Wildl. Manag. 76, 1420–1430 (2012).

    Article 

    Google Scholar 

  • 50.

    Mayer, J. J. & Brisbin, I. J., Jr. Wild Pigs: Biology, Damage, Control Techniques and Management. Report No. SRNL-RP-2009-00869, 77–104 (Savannah River National Laboratory, 2009).

  • 51.

    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using {lme4}. J. Stat. Softw. 67, 1–48 (2015).

    Google Scholar 

  • 52.

    R: A language and environment for statistical computing. v. 3.5.3 (R Foundation for Statistical Computing, Vienna, Austria, 2020).

  • 53.

    Weinbeck, S. W., Viner, B. J., Rivera-Giboyeaux A. M. Meteorological Monitoring Program at the Savannah River Site. Report No. SRNL-TR-2020-00197 (Savannah River National Laboratory, 2020).

  • 54.

    Plummer, M. In Proceedings of the 3rd International Workshop on Distributed Statistical Computing. 1–10 (Vienna, Austria).

  • 55.

    Denwood, M. J. runjags: An R package providing interface utilities, model templates, parallel computing methods and additional distributions for MCMC models in JAGS. J. Stat. Softw. 71, 1–25 (2016).

    Article 

    Google Scholar 

  • 56.

    Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–472 (1992).

    MATH 

    Google Scholar 

  • 57.

    Pollock, K. H., Winterstein, S. R., Bunck, C. M. & Curtis, P. D. Survival analysis in telemetry studies: The staggered entry design. J. Wildl. Manag. 53, 7–15 (1989).

    Article 

    Google Scholar 

  • 58.

    Harrell, F. Regression Modeling Strategies (ed. Harrell, F.) 60–64 (Springer, 2001).

  • 59.

    McCoy, D. E. et al. A comparative study of litter size and sex composition in a large dataset of callitrichine monkeys. Am. J. Primatol. 81, e23038. https://doi.org/10.1002/ajp.23038 (2019).

  • 60.

    Watanabe, S. Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory. J. Mach. Learn. Res. 11, 3571–3594 (2010).

  • 61.

    Burnham, K. P. & Anderson, D. R. A practical information-theoretic approach. In Model Selection and Multimodel Inference, 2nd edn. 75–117 (Springer, 2002).

  • 62.

    Taylor, R. B., Hellgren, E. C., Gabor, T. M. & Ilse, L. M. Reproduction of feral pigs in southern Texas. J. Mammal. 79, 1325–1331 (1998).

    Article 

    Google Scholar 

  • 63.

    Mittwoch, U. Blastocysts prepare for the race to be male. Hum. Reprod. 8, 1550–1555 (1993).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 64.

    Stanton, H. & Carroll, J. Potential mechanisms responsible for prenatal and perinatal mortality or low viability of swine. J. Anim. Sci. 38, 1037–1044 (1974).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 65.

    Hartsock, T. G. & Graves, H. Neonatal behavior and nutrition-related mortality in domestic swine. J. Anim. Sci. 42, 235–241 (1976).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 66.

    Spicer, E. et al. Causes of preweaning mortality on a large intensive piggery. Aus. Vet. J. 63, 71–75 (1986).

    CAS 
    Article 

    Google Scholar 

  • 67.

    Hendrix, W. F., Kelley, K. W., Gaskins, C. T. & Hinrichs, D. J. Porcine neonatal survival and serum gamma globulins. J. Anim. Sci. 47, 1281–1286 (1978).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 68.

    De Roth, L. & Downie, H. Evaluation of viability of neonatal swine. Can. Vet. J. 17, 275–279 (1976).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 69.

    Williams, G. The question of adaptive sex ratio in outcrossed vertebrates. Proc. R. Soc. Lond. B 205, 567–580 (1979).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 70.

    Servanty, S., Gaillard, J.-M., Allainé, D., Brandt, S. & Baubet, E. Litter size and fetal sex ratio adjustment in a highly polytocous species: The wild boar. Behav. Ecol. 18, 427–432 (2007).

    Article 

    Google Scholar 

  • 71.

    Fernández-Llario, P., Carranza, J. & Mateos-Quesada, P. Sex allocation in a polygynous mammal with large litters: The wild boar. Anim. Behav. 58, 1079–1084 (1999).

    PubMed 
    Article 

    Google Scholar 

  • 72.

    Focardi, S., Gaillard, J.-M., Ronchi, F. & Rossi, S. Survival of wild boars in a variable environment: unexpected life-history variation in an unusual ungulate. J. Mammal. 89, 1113–1123 (2008).

    Article 

    Google Scholar 

  • 73.

    Gamelon, M. et al. Do age-specific survival patterns of wild boar fit current evolutionary theories of senescence?. Evolution 68, 3636–3643 (2014).

    PubMed 
    Article 

    Google Scholar 

  • 74.

    Saïd, S., Tolon, V., Brandt, S. & Baubet, E. Sex effect on habitat selection in response to hunting disturbance: The study of wild boar. Eur. J. Wildl. Res. 58, 107–115 (2012).

    Article 

    Google Scholar 

  • 75.

    Caro, T. The adaptive significance of coloration in mammals. BioSci. 55, 125–136 (2005).

    Article 

    Google Scholar 

  • 76.

    Tewes, M. E., Mock, J. M. & Young, J. H. Bobcat predation on quail, birds, and mesomammals. In Proc. Nat. Quail Symp. 65–70. (2002).

  • 77.

    Jones, M. P., Pierce, K. E. Jr. & Ward, D. Avian vision: a review of form and function with special consideration to birds of prey. J. Ex. Pet Med. 16, 69–87 (2007).

    Article 

    Google Scholar 

  • 78.

    Walsberg, G. E. Coat color and solar heat gain in animals. BioSci. 33, 88–91 (1983).

    Article 

    Google Scholar 

  • 79.

    Lack, D. The Natural Regulation of Animal Numbers. (ed. Lack, D.) 343 (Oxford University Press, 1954).

  • 80.

    Stearns, S. C. Life-history tactics: A review of the ideas. Q. Rev. Biol. 51, 3–47 (1976).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 81.

    Gamelon, M. et al. The relationship between phenotypic variation among offspring and mother body mass in wild boar: Evidence of coin-flipping?. J. Anim. Ecol. 82, 937–945 (2013).

    PubMed 
    Article 

    Google Scholar 

  • 82.

    Mitchell, G. & Stevens, C. Primiparous and multiparous monkey mothers in a mildly stressful social situation: First three months. Dev. Psychobiol. J. Int. Soc. Dev. Psychobiol. 1, 280–286 (1968).

    Article 

    Google Scholar 

  • 83.

    Okai, D., Aherne, F. & Hardin, R. Effects of sow nutrition in late gestation on the body composition and survival of the neonatal pig. Can. J. Anim. Sci. 57, 439–448 (1977).

    CAS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    MIT students and alumni “hack” Hong Kong Kowloon East

    Coexistence holes fill a gap in community assembly theory