in

Integrating multiple chemical tracers to elucidate the diet and habitat of Cookiecutter Sharks

  • 1.

    Norse, E. A. et al. Sustainability of deep-sea fisheries. Mar. Policy 36, 307–320 (2012).

    Article 

    Google Scholar 

  • 2.

    Simpfendorfer, C. A. & Kyne, P. M. Limited potential to recover from overfishing raises concerns for deep-sea sharks, rays and chimaeras. Environ. Conserv. 36, 97–103 (2009).

    Article 

    Google Scholar 

  • 3.

    Kyne, P. & Simpfendorfer, C. In Sharks and Their Relatives II: Biodiversity, Physiology, and Conservation (eds Carrier, J. C. et al.) 37–113 (CRC Press, 2010).

    Google Scholar 

  • 4.

    Dunn, M. R., Szabo, A., McVeagh, M. S. & Smith, P. J. The diet of deepwater sharks and the benefits of using DNA identification of prey. Deep Sea Res. Part I 57, 923–930 (2010).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Mauchline, J. & Gordon, J. Diets of the sharks and chimaeroids of the Rockall Trough, northeastern Atlantic Ocean. Mar. Biol. 75, 269–278 (1983).

    Article 

    Google Scholar 

  • 6.

    Cortes, E. Standardized diet compositions and trophic levels in sharks. ICES J. Mar. Sci. 56, 707–717 (1999).

    Article 

    Google Scholar 

  • 7.

    Peterson, B. J. & Fry, B. Stable isotopes in ecosystem studies. Annu. Rev. Ecol. Syst. 18, 293–320 (1987).

    Article 

    Google Scholar 

  • 8.

    Post, D. M. Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology 83, 703–718 (2002).

    Article 

    Google Scholar 

  • 9.

    Estrada, J. A., Rice, A. N., Lutcavage, M. E. & Skomall, G. B. Predicting trophic position in sharks of the north-west Atlantic Ocean using stable isotope analysis. J. Mar. Biol. Assoc. UK 83, 1347–1350 (2003).

    CAS 
    Article 

    Google Scholar 

  • 10.

    Hussey, N. E. et al. Stable isotopes and elasmobranchs: Tissue types, methods, applications and assumptions. J. Fish. Biol. 20, 1449–1484 (2012).

    Article 
    CAS 

    Google Scholar 

  • 11.

    Meyer, L., Pethybridge, H., Nichols, P. D., Beckmann, C. & Huveneers, C. Abiotic and biotic drivers of fatty acid tracers in ecology: A global analysis of chondrichthyan profiles. Funct. Ecol. 20, 20 (2019).

    Google Scholar 

  • 12.

    Munroe, S., Meyer, L. & Heithaus, M. Dietary biomarkers in shark foraging and movement ecology. Shark Res. Emerg. Technol. Appl. Field Lab. 20, 20 (2018).

    Google Scholar 

  • 13.

    Hobson, K. A., Barnett-Johnson, R. & Cerling, T. E. In Isoscapes: Understanding Movement, Pattern, and Process on Earth Through Isotope Mapping (eds West, J. B. et al.) 273–298 (Springer, 2010).

    Google Scholar 

  • 14.

    Michener, R. H. & Kaufman, L. In Stable Isotopes in Ecology and Environmental Science (eds Michener, R. & Lajtha, K.) 238–282 (Blackwell, 2007).

    Google Scholar 

  • 15.

    West, J. B., Bowen, G. J., Cerling, T. E. & Ehleringer, J. R. Stable isotopes as one of nature’s ecological recorders. Trends Ecol. Evol. 21, 408–414 (2006).

    PubMed 
    Article 

    Google Scholar 

  • 16.

    DeNiro, M. J. Influence of diet on the distribution of nitrogen isotopes in animals. Geochim. Cosmochim. Acta 45, 341–345 (1981).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 17.

    DeNiro, M. J. & Epstein, S. Influence of diet on the distribution of carbon isotopes in animals. Geochim. Cosmochim. Acta 42, 495–506 (1978).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 18.

    Tieszen, L. L., Boutton, T. W., Tesdahl, K. G. & Slade, N. A. Fractionation and turnover of stable carbon isotopes in animal tissues: Implications for δ13C analysis of diet. Oecologia 57, 32–37 (1983).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 19.

    MacNeil, M. A., Skomal, G. B. & Fisk, A. T. Stable isotopes from multiple tissues reveal diet switching in sharks. Mar. Ecol. Prog. Ser. 302, 199–206 (2005).

    ADS 
    Article 

    Google Scholar 

  • 20.

    Kim, S. L., Martinez del Rio, C., Casper, D. & Koch, P. L. Isotopic incorporation rates for shark tissues from a long-term captive feeding study. J Exp Biol 215, 2495–2500 (2012).

  • 21.

    Madigan, D. J. et al. Tissue turnover rates and isotopic trophic discrimination factors in the endothermic teleost, Pacific bluefin tuna (Thunnus orientalis). PLoS One 7, e49220 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 22.

    Carlisle, A. B. et al. Using stable isotope analysis to understand the migration and trophic ecology of northeastern Pacific white sharks (Carcharodon carcharias). PLoS One 7, 30492 (2012).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 23.

    Madigan, D. J. et al. Reconstructing transoceanic migration patterns of Pacific bluefin tuna using a chemical tracer toolbox. Ecology 95, 1674–1683 (2014).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 24.

    Ackman, R.G. & Macpherson, E.J. Coincidence of cis-and trans-monoethylenic fatty acids simplifies the open-tubular gas-liquid chromatography of butyl esters of butter fatty acids. Food chem. 50(1), 45–52 (1994).

  • 25.

    Sargent, J., Bell, G., McEvoy, L., Tocher, D. & Estevez, A. Recent developments in the essential fatty acid nutrition of fish. Aquaculture., 177(1–4), 191–199 (1999).

  • 26.

    Tocher, D.R. Metabolism and functions of lipids and fatty acids in teleost fish. Rev. Fish. Sci. 11(2), 107–184 (2003).

  • 27.

    McMeans, B. C. et al. The role of Greenland sharks (Somniosus microcephalus) in an Arctic ecosystem: Assessed via stable isotopes and fatty acids. Mar. Biol. 160, 1223–1238. https://doi.org/10.1007/s00227-013-2174-z (2013).

    Article 

    Google Scholar 

  • 28.

    Pethybridge, H. R., Nichols, P. D., Virtue, P. & Jackson, G. D. The foraging ecology of an oceanic squid, Todarodes filippovae: The use of signature lipid profiling to monitor ecosystem change. Deep Sea Res. Part II 95, 119–128 (2013).

    CAS 
    Article 

    Google Scholar 

  • 29.

    Pethybridge, H. et al. Lipid and mercury profiles of 61 mid-trophic species collected off south-eastern Australia. Mar. Freshw. Res. 61, 1092–1108 (2010).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Beckmann, C. L., Mitchell, J. G., Stone, D. A. & Huveneers, C. A controlled feeding experiment investigating the effects of a dietary switch on muscle and liver fatty acid profiles in Port Jackson sharks Heterodontus portusjacksoni. J. Exp. Mar. Biol. Ecol. 448, 10–18 (2013).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Pethybridge, H. R., Choy, C. A., Polovina, J. J. & Fulton, E. A. Improving marine ecosystem models with biochemical tracers. Ann. Rev. Mar. Sci. 10, 199–228 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 32.

    Belicka, L. L., Matich, P., Jaffé, R. & Heithaus, M. R. Fatty acids and stable isotopes as indicators of early-life feeding and potential maternal resource dependency in the bull shark Carcharhinus leucas. Mar. Ecol. Prog. Ser. 455, 245–256 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 33.

    Every, S. L., Fulton, C. J., Pethybridge, H. R., Kyne, P. M. & Crook, D. A. A seasonally dynamic estuarine ecosystem provides a diverse prey base for Elasmobranchs. Estuar. Coasts 42, 580–595 (2019).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Ruppert, K. M., Kline, R. J. & Rahman, M. S. Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: A systematic review in methods, monitoring, and applications of global eDNA. Glob. Ecol. Conserv. 20, e00547 (2019).

    Article 

    Google Scholar 

  • 35.

    Soininen, E. M. et al. Shedding new light on the diet of Norwegian lemmings: DNA metabarcoding of stomach content. Polar Biol 36, 1069–1076 (2013).

    Article 

    Google Scholar 

  • 36.

    De Barba, M. et al. DNA metabarcoding multiplexing and validation of data accuracy for diet assessment: Application to omnivorous diet. Mol. Ecol. Resour. 14, 306–323 (2014).

    Article 
    CAS 

    Google Scholar 

  • 37.

    Deagle, B. E., Kirkwood, R. & Jarman, S. N. Analysis of Australian fur seal diet by pyrosequencing prey DNA in faeces. Mol. Ecol. 18, 2022–2038 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 38.

    Bade, L. M., Balakrishnan, C. N., Pilgrim, E. M., McRae, S. B. & Luczkovich, J. J. A genetic technique to identify the diet of cownose rays, Rhinoptera bonasus: Analysis of shellfish prey items from North Carolina and Virginia. Environ. Biol. Fishes 97, 999–1012 (2014).

    Article 

    Google Scholar 

  • 39.

    Jensen, M. R., Knudsen, S. W., Munk, P., Thomsen, P. F. & Møller, P. R. Tracing European eel in the diet of mesopelagic fishes from the Sargasso Sea using DNA from fish stomachs. Mar. Biol. 165, 130 (2018).

    Article 
    CAS 

    Google Scholar 

  • 40.

    Compagno, L. FAO species catalogue. Vol. 4. Sharks of the world. An annotated and illustrated catalogue of sharks species known to date. Part 1. Hexanchiformes to Lammiformes. FAO Fish. Synop. 20, 1–249 (1984).

    Google Scholar 

  • 41.

    Jahn, A. & Haedrich, R. Notes on the pelagic squaloid shark Isistius brasiliensis. Biol. Oceanogr. 5, 297–309 (1988).

    Google Scholar 

  • 42.

    Nakano, H. & Tabuchi, M. Occurrence of the cookiecutter shark Isistius brasiliensis in surface waters of the North Pacific Ocean. Jpn. J. Ichthyol. 37, 60–63 (1990).

    Google Scholar 

  • 43.

    Hubbs, C. L., Iwai, T. & Matsubara, K. External and internal characters, horizontal and vertical distributions, luminescence, and food of the dwarf pelagic shark, Euprotomicrus bispinatus. (1967).

  • 44.

    Papastamatiou, Y. P., Wetherbee, B. M., O’Sullivan, J., Goodmanlowe, G. D. & Lowe, C. G. Foraging ecology of cookiecutter sharks (Isistius brasiliensis) on pelagic fishes in Hawaii, inferred from prey bite wounds. Environ. Biol. Fishes 88, 361–368 (2010).

    Article 

    Google Scholar 

  • 45.

    Feunteun, A. et al. First evaluation of the cookie-cutter sharks (Isistius sp.) predation pattern on different cetacean species in Martinique. Environ. Biol. Fishes 20, 1–11 (2018).

    Google Scholar 

  • 46.

    Jones, E. Isistius brasiliensis, a squaloid shark, probable cause of crater wounds on fishes and cetaceans. Fish Bull. 69, 791–798 (1971).

    Google Scholar 

  • 47.

    Strasburg, D. W. The diet and dentition of Isistius brasiliensis, with remarks on tooth replacement in other sharks. Copeia 20, 33–40 (1963).

    Article 

    Google Scholar 

  • 48.

    Widder, E. A. A predatory use of counter illumination by the squaloid shark, Isistius brasiliensis. Environ. Biol. Fishes 53, 267–273 (1998).

    Article 

    Google Scholar 

  • 49.

    Moore, M., Steiner, L. & Jann, B. Cetacean surveys in the Cape Verde Islands and the use of cookiecutter shark bite lesions as a population marker for fin whales. Aquat. Mamm. 29, 383–389 (2003).

    Article 

    Google Scholar 

  • 50.

    Muñoz-Chápuli, R., Salgado, J. R. & de La Serna, J. Biogeography of Isistius brasiliensis in the north-eastern Atlantic, inferred from crater wounds on swordfish (Xiphias gladius). J. Mar. Biol. Assoc. U K 68, 315–321 (1988).

    Article 

    Google Scholar 

  • 51.

    Murakami, C., Yoshida, H. & Yonezaki, S. Cookie-cutter shark Isistius brasiliensis eats Bryde’s whale Balaenoptera brydei. Ichthyol. Res. 65, 398–404 (2018).

    Article 

    Google Scholar 

  • 52.

    Castro, J., Anllo, T., Mejuto, J. & García, B. Ichnology applied to the study of Cookiecutter shark (Isistius brasiliensis) biogeography in the Gulf of Guinea. Environ. Biol. Fishes 101, 579–588 (2018).

    Article 

    Google Scholar 

  • 53.

    Kim, S. L. et al. Carbon and nitrogen discrimination factors for elasmobranch soft tissues based on a long-term controlled feeding study. Environ. Biol. Fishes 95, 37–52 (2012).

    Article 

    Google Scholar 

  • 54.

    Le Boeuf, B., McCosker, J. & Hewitt, J. Crater wounds on northern elephant seals: The Cookiecutter Shark strikes again. Fish Bull. 85, 20 (1987).

    Google Scholar 

  • 55.

    Niella, Y. et al. Cookie-cutter shark Isistius spp. predation upon different tuna species from the south-western Atlantic Ocean. J. Fish. Biol. 92, 1082–1089 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 56.

    Manlick, P. J., Petersen, S. M., Moriarty, K. M. & Pauli, J. N. Stable isotopes reveal limited Eltonian niche conservatism across carnivore populations. Funct. Ecol. 33, 335–345 (2019).

    Article 

    Google Scholar 

  • 57.

    McMeans, B.C., Arts, M.T. & Fisk, A.T. Similarity between predator and prey fatty acid profiles is tissue dependent in Greenland sharks (Somniosus microcephalus): Implications for diet reconstruction. J. Exp. Mar. Biol. Ecol. 429, 55–63 (2012).

  • 58.

    Waugh, C.A., Nichols, P.D., Schlabach, M., Noad, M. & Nash, S.B. Vertical distribution of lipids, fatty acids and organochlorine contaminants in the blubber of southern hemisphere humpback whales (Megaptera novaeangliae). Mar. Environ. Res. 94, 24–31 (2014).

  • 59.

    Sigler, M. F. et al. Diet of Pacific sleeper shark, a potential Steller sea lion predator, in the north-east Pacific Ocean. J. Fish. Biol. 69, 392–405 (2006).

    Article 

    Google Scholar 

  • 60.

    Leclerc, L.-M. et al. Greenland sharks (Somniosus microcephalus) scavenge offal from minke (Balaenoptera acutorostrata) whaling operations in Svalbard (Norway). Polar. Res. 30, 7342 (2011).

    Article 

    Google Scholar 

  • 61.

    Yano, K., Stevens, J. & Compagno, L. Distribution, reproduction and feeding of the Greenland shark Somniosus (Somniosus) microcephalus, with notes on two other sleeper sharks, Somniosus (Somniosus) pacificus and Somniosus (Somniosus) antarcticus. J. Fish. Biol. 70, 374–390 (2007).

    Article 

    Google Scholar 

  • 62.

    Preti, A. et al. Comparative feeding ecology of shortfin mako, blue and thresher sharks in the California current. Environ. Biol. Fishes https://doi.org/10.1007/s10641-10012-19980-x (2012).

    Article 

    Google Scholar 

  • 63.

    Phillips, D. L. et al. Best practices for use of stable isotope mixing models in food-web studies. Can. J. Zool. 92, 823–835 (2014).

    Article 

    Google Scholar 

  • 64.

    Smith, J. A., Mazumder, D., Suthers, I. M. & Taylor, M. D. To fit or not to fit: Evaluating stable isotope mixing models using simulated mixing polygons. Methods Ecol. Evol. 4, 612–618 (2013).

    Article 

    Google Scholar 

  • 65.

    Hussey, N. E. et al. Rescaling the trophic structure of marine food webs. Ecol. Lett. https://doi.org/10.1111/ele.12226 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 66.

    Childress, J. J. & Nygaard, M. H. Deep Sea Research and Oceanographic Abstracts 1093–1109 (Elsevier, 1973).

    Google Scholar 

  • 67.

    Childress, J., Price, M., Favuzzi, J. & Cowles, D. Chemical composition of midwater fishes as a function of depth of occurrence off the Hawaiian Islands: Food availability as a selective factor?. Mar. Biol. 105, 235–246 (1990).

    Article 

    Google Scholar 

  • 68.

    Choy, C. A., Popp, B. N., Hannides, C. C. & Drazen, J. C. Trophic structure and food resources of epipelagic and mesopelagic fishes in the North Pacific Subtropical Gyre ecosystem inferred from nitrogen isotopic compositions. Limnol. Oceanogr. 60, 1156–1171 (2015).

    ADS 
    Article 

    Google Scholar 

  • 69.

    Gloeckler, K. et al. Stable isotope analysis of micronekton around Hawaii reveals suspended particles are an important nutritional source in the lower mesopelagic and upper bathypelagic zones. Limnol. Oceanogr. 63, 1168–1180 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 70.

    Hannides, C. C., Popp, B. N., Choy, C. A. & Drazen, J. C. Midwater zooplankton and suspended particle dynamics in the North Pacific Subtropical Gyre: A stable isotope perspective. Limnol. Oceanogr. 58, 1931–1946 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 71.

    Dunstan, G.A., Sinclair, A.J., O’Dea, K. & Naughton, J.M. The lipid content and fatty acid composition of various marine species from southern Australian coastal waters. Comp. Biochem. Physiol. B: Comp. Biochem. 91(1), 165–169 (1988).

  • 72.

    Semeniuk, C.A., Speers-Roesch, B. & Rothley, K.D. Using fatty-acid profile analysis as an ecologic indicator in the management of tourist impacts on marine wildlife: a case of stingray-feeding in the Caribbean. Environ. Manag. 40(4), 665–677 (2007).

  • 73.

    Wai, T.C., Leung, K.M., Sin, S.Y., Cornish, A., Dudgeon, D. & Williams, G.A. Spatial, seasonal, and ontogenetic variations in the significance of detrital pathways and terrestrial carbon for a benthic shark, Chiloscyllium plagiosum (Hemiscylliidae), in a tropical estuary. Limnol. Oceanogr. 56(3), 1035–1053 (2011).

  • 74.

    Ebert, D. A., Fowler, S. L., Compagno, L. J. & Dando, M. Sharks of the World: A Fully Illustrated Guide (Wild Nature Press, 2013).

    Google Scholar 

  • 75.

    Vaudo, J. J., Matich, P. & Heithaus, M. R. Mother-offspring isotope fractionation in two species of placentatrophic sharks. J. Fish. Biol. 77, 1724–1727 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 76.

    Olin, J. A. et al. Maternal meddling in neonatal sharks: Implications for interpreting stable isotopes in young animals. Rapid Commun. Mass Spectrom. 25, 1008–1016 (2011).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 77.

    Grubbs, R. D. In Sharks and Their Relatives II: Biodiversity, Physiology, and Conservation (eds Carrier, J. C. et al.) 319–350 (CRC Press, 2010).

    Google Scholar 

  • 78.

    Yano, K. & Tanaka, S. Size at maturity, reproductive cycle, fecundity, and depth segregation of the deep sea squaloid sharks Centroscymnus owstoni and C. coelolepis in Suruga Bay Japan. Nippon Suisan Gakkaishi 54, 20 (1988).

    Google Scholar 

  • 79.

    Yano, K. & Tanaka, S. Review of the deep sea squaloid shark genus Scymnodon of Japan, with a description of a new species. Jpn. J. Ichthyol. 30, 341–360 (1984).

    Google Scholar 

  • 80.

    Munoz-Chapuli, R. Ethologie de la reproduction chez quelques requins de l’Atlantique Nord-Est. Cybium 8, 1–14 (1984).

    Google Scholar 

  • 81.

    Jakobsdóttir, K. B. Biological aspects of two deep-water squalid sharks: Centroscyllium fabricii (Reinhardt, 1825) and Etmopterus princeps (Collett, 1904) in Icelandic waters. Fish Res. 51, 247–265 (2001).

    Article 

    Google Scholar 

  • 82.

    Wetherbee, B. M. Distribution and reproduction of the southern lantern shark from New Zealand. J. Fish. Biol. 49, 1186–1196. https://doi.org/10.1111/j.1095-8649.1996.tb01788.x (1996).

    Article 

    Google Scholar 

  • 83.

    MacNeil, M. A., Drouillard, K. G. & Fisk, A. T. Variable uptake and elimination of stable nitrogen isotopes between tissues in fish. Can. J. Fish. Aquat. Sci. 63, 345–353 (2006).

    CAS 
    Article 

    Google Scholar 

  • 84.

    Logan, J. M. & Lutcavage, M. Stable isotope dynamics in elasmobranch fishes. Hydrobiologia 644, 231–244 (2010).

    CAS 
    Article 

    Google Scholar 

  • 85.

    Weidel, B. C., Carpenter, S. R., Kitchell, J. F. & Vander Zanden, M. J. Rates and components of carbon turnover in fish muscle: Insights from bioenergetics models and a whole-lake 13C addition. Can. J. Fish. Aquat. Sci. 68, 387–399 (2011).

    CAS 
    Article 

    Google Scholar 

  • 86.

    Carlisle, A. B. et al. Interactive effects of urea and lipid content confound stable isotope analysis in elasmobranch fishes. Can. J. Fish. Aquat. Sci. 74, 419–428 (2016).

    Article 
    CAS 

    Google Scholar 

  • 87.

    Kim, S. L. & Koch, P. L. Methods to collect, preserve, and prepare elasmobranch tissues for stable isotope analysis. Environ. Biol. Fishes 95, 53–63 (2012).

    Article 

    Google Scholar 

  • 88.

    Witteveen, B. H., Worthy, G. A. J. & Roth, J. D. Tracing migratory movements of breeding North Pacific humpback whales using stable isotope analysis. Mar. Ecol. Prog. Ser. 393, 173–183. https://doi.org/10.3354/meps08231 (2009).

    ADS 
    Article 

    Google Scholar 

  • 89.

    Parry, M. P. The trophic ecology of two ommastrephid squid species, Ommastrephes bartamii and Sthenoteuthis oualaniensis, in the North Pacific sub-tropical gyre Ph.D. thesis, University of Hawaii, (2003).

  • 90.

    Parry, M. P. Trophic variation with length in two ommastrephid squids, Ommastrephes bartramiii and Sthenoteuthis oualaniensis. Mar. Biol. 153, 249–256 (2008).

    Article 

    Google Scholar 

  • 91.

    Graham, B. S. Trophic dynamics and movements of tuna in tropical Pacific Ocean inferred from stable isotope analyses Ph. D. thesis thesis, University of Hawaii, (2007).

  • 92.

    Graham, B. S., Grubbs, D., Holland, K. & Popp, B. N. A rapid ontogenetic shift in the diet of juvenile yellowfin tuna from Hawaii. Mar. Biol. 150, 647–658 (2007).

    Article 

    Google Scholar 

  • 93.

    Carlisle, A. B. et al. Stable isotope analysis of vertebrae reveals ontogenetic changes in habitat in an endothermic pelagic shark. Proc. R. Soc. B-Biol. Sci. 282, 20141446. https://doi.org/10.1098/rspb.2014.1446 (2015).

    CAS 
    Article 

    Google Scholar 

  • 94.

    Stock, B. C. & Semmens, B. X. MixSIAR GUI user manual, version 1.0. http://conserver.iugo-cafe.org/user/brice.semmens/MixSIAR (2013).

  • 95.

    Folch, J., Lees, M. & Stanley, G.S. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226(1), 497–509 (1957).

  • 96.

    Kartikasari, L.R., Hughes, R.J., Geier, M.S., Makrides, M. & Gibson, R.A. Dietary alpha-linolenic acid enhances omega-3 long chain polyunsaturated fatty acid levels in
    chicken tissues. Prostaglandins Leukot. Essent. Fatty Acids. 87(4–5), 103–109 (2012).

  • 97.

    Froese, R. & D. Pauly. Editors. 2021. FishBase. World Wide Web electronic publication. https://www.fishbase.org, version (02/2021).

  • 98.

    Clarke, K. & Gorley, R. (PRIMER-E: Plymouth, 2006).

  • 99.

    Riaz, T. et al. ecoPrimers: Inference of new DNA barcode markers from whole genome sequence analysis. Nucleic Acids Res. 39, e145–e145 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 100.

    Kelly, R. P., Port, J. A., Yamahara, K. M. & Crowder, L. B. Using environmental DNA to census marine fishes in a large mesocosm. PLoS One 9, e86175 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 101.

    Stoeckle, M. Y., Soboleva, L. & Charlop-Powers, Z. Aquatic environmental DNA detects seasonal fish abundance and habitat preference in an urban estuary. PLoS ONE 12, e0175186 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 102.

    Port, J. A. et al. Assessing vertebrate biodiversity in a kelp forest ecosystem using environmental DNA. Mol. Ecol. 25, 527–541 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 103.

    Shehzad, W. et al. Carnivore diet analysis based on next-generation sequencing: Application to the leopard cat (Prionailurus bengalensis) in Pakistan. Mol. Ecol. 21, 1951–1965 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 104.

    Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).

    CAS 
    Article 

    Google Scholar 

  • 105.

    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 10–12 (2011).

    Article 

    Google Scholar 

  • 106.

    Zhang, J., Kobert, K., Flouri, T. & Stamatakis, A. PEAR: A fast and accurate illumina paired-end reAd mergeR. Bioinformatics 30, 614–620 (2013).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 107.

    Schnell, I. B., Bohmann, K. & Gilbert, M. T. P. Tag jumps illuminated-reducing sequence-to-sample misidentifications in metabarcoding studies. Mol. Ecol. Resour. 15, 1289–1303 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 108.

    Camacho, C. et al. BLAST+: Architecture and applications. BMC Bioinform. 10, 421 (2009).

    Article 
    CAS 

    Google Scholar 

  • 109.

    Oksanen, J. et al. Vegan: Community ecology package. R package version 1.17–4. http://cran.r-project.org. Acesso em 23, 2010 (2010).


  • Source: Ecology - nature.com

    Accelerating AI at the speed of light

    Exploring the future of humanitarian technology