Heil M, Karban R. Explaining evolution of plant communication by airborne signals. Trends Ecol Evol. 2010;25:137–44.
Google Scholar
Rubin IN, Ellner SP, Kessler A, Morrell KA. Informed herbivore movement and interplant communication determine the effects of induced resistance in an individual-based model. J Anim Ecol. 2015;84:1273–85.
Google Scholar
Kalske A, Shiojiri K, Uesugi A, Sakata Y, Morrell K, Kessler A. Insect herbivory selects for volatile-mediated plant-plant communication. Curr Biol. 2019;29:3128–33.
Google Scholar
Frisen ML, Porter SS, Stark SC, von Wettberg EJ, Sachs JL, Martinez-Romero E. Microbially mediated plant functional traits. Ann Rev Ecol Evol Syst. 2011;42:23–46.
Google Scholar
Lebeis SL, Herrera Paredes S, Lundberg DS, Breakfield N, Gehrin J, McDonald M, et al. Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science. 2015;349:860–4.
Google Scholar
Berendsen RL, Vismans G, Yu K, Song Y, de Jonge R, Burgman WP, et al. Disease-induced assemblage of a plant-beneficial bacterial consortium. ISME J. 2018;12:1496–507.
Google Scholar
Pieterse CMJ, Zamioudis C, Berendsen RL, Weller DM, Van Wees SCM, Bakker PAHM. Induced systemic resistance by beneficial microbes. Ann Rev Phytopathol. 2014;52:347–75.
Google Scholar
Frank L, Wenig M, Ghirardo A, van der Krol A, Vlot AC, Schnitzler J-P, et al. Isoprene and β-caryophyllene confer plant resistance via different plant internal signaling pathways. Plant Cell Environ. 2021;44:1151–64.
Google Scholar
Kong HG, Song GC, Sim H-J, Ryu C-M. Achieving similar root microbiota composition in neighbouring plants through airborne signalling. ISME J. 2021;15:397–408.
Google Scholar
Dicke M, Bruin J. Chemical information transfer between plants: back to the future. Biochem Syst Ecol. 2001;29:981–94.
Google Scholar
Peacher MD, Meiners SJ. Inoculum handling alters the strength and direction of plant-microbe interactions. Ecology. 2020;4:e02994.
Pieterse CMJ, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SCM. Hormonal modulation of plant immunity. Ann Rev Cell Dev Biol. 2012;28:489–521.
Google Scholar
Erb M. Volatiles as inducers and suppressors of plant defense and immunity—origins, specificity, perception, and signalling. Curr Opin Plant Biol. 2018;44:117–21.
Google Scholar
Nagashima A, Higaki T, Koeduka T, Ishigami K, Hosokawa S, Watanabe H, et al. Transcriptional regulators involved in responses to volatile organic compounds in plants. J Biol Chem. 2019;294:2256–66.
Google Scholar
Khorassani R, Hettwer U, Ratzinger A, Steingrobe B, Karlovsky P, Claassen N. Citramalic acid and salicylic acid in sugar beet root exudates solubilize soil phosphorus. BMC Plant Biol. 2011;11:21.
Google Scholar
Fitzpatrick CR, Copeland J, Wang PW, Guttman DS, Kotanen PM, Johnson MTJ. Assembly and ecological function of the root microbiome across angiosperm plant species. Proc Natl Acad Sci. 2018;115:E1157–65.
Google Scholar
Crawford KM, Bauer JT, Comita LS, Eppinga MB, Johnson DJ, Mangan SA, et al. When and where plant-soil feedback may promote plant coexistence: a meta-analysis. Ecol Lett. 2019;22:1274–84.
Google Scholar
Tidbury HJ, Best A, Boots M. The epidemiological consequences of immune priming. Proc R Soc B: Biol Sci. 2015;279:4505–12.
Google Scholar
Wagner MR, Lundberg DS, Coleman-Derr D, Tringe SG, Dangl JL, Mitchell-Olds T. Natural soil microbiomes alter flowering phenology and the intensity of selection of flowering time in a wild Arabidopsis relative. Ecol Lett. 2014;17:717–26.
Google Scholar
Petipas RH, Geber MA, Lau JA. Microbe-mediated adaptation in plants. Ecol Lett. 2021;24:1302–17.
Source: Ecology - nature.com