in

Inter-reef Halimeda algal habitats within the Great Barrier Reef support a distinct biotic community and high biodiversity

  • 1.

    Roberts, C. M. et al. Marine biodiversity hotspots and conservation priorities for tropical reefs. Science 295, 1280–1284 (2002).

    CAS  Article  Google Scholar 

  • 2.

    Kenchington, R. & Hutchings, P. Some implications of high biodiversity for management of tropical marine ecosystems—an Australian perspective. Diversity 10, 1 (2017).

    Article  Google Scholar 

  • 3.

    Field, C. et al. Mangrove biodiversity and ecosystem function. Glob. Ecol. Biogeogr. Lett. 7, 3–14 (1998).

    Article  Google Scholar 

  • 4.

    Honda, K., Nakamura, Y., Nakaoka, M., Uy, W. H. & Fortes, M. D. Habitat use by fishes in coral reefs, seagrass beds and mangrove habitats in the Philippines. PLoS ONE 8, e65735 (2013).

    CAS  Article  Google Scholar 

  • 5.

    Nagelkerken, I. et al. Importance of mangroves, seagrass beds and the shallow coral reef as a nursery for important coral reef fishes, using a visual census technique. Estuar. Coast. Shelf Sci. 51, 31–44 (2000).

    Article  Google Scholar 

  • 6.

    Unsworth, R. K. et al. High connectivity of Indo-Pacific seagrass fish assemblages with mangrove and coral reef habitats. Mar. Ecol. Prog. Ser. 353, 213–224 (2008).

    Article  Google Scholar 

  • 7.

    Hoeksema, B. W. in Biogeography, Time, and Place: Distributions, Barriers, and Islands. Topics in Geobiology (ed. Renema, W.) 117–178 (Springer, 2007).

  • 8.

    Pitcher, C. R. et al. Seabed Biodiversity on the Continental Shelf of the Great Barrier Reef World Heritage Area AIMS/CSIRO/QM/QDPI Final Report to CRC Reef Research (CSIRO Marine and Atmospheric Research, 2007); http://www.frdc.com.au/Archived-Reports/FRDC%20Projects/2003-021-DLD.pdf

  • 9.

    Richards, Z. T. & Day, J. C. Biodiversity of the Great Barrier Reef—how adequately is it protected? PeerJ 6, e4747 (2018).

    Article  Google Scholar 

  • 10.

    Harris, P. T. et al. Submerged banks in the Great Barrier Reef, Australia, greatly increase available coral reef habitat. ICES J. Mar. Sci. 70, 284–293 (2013).

    Article  Google Scholar 

  • 11.

    Chin, A. in State of the Great Barrier Reef Report 2003 (ed. Chin, A.) 1–16 (Great Barrier Reef Marine Park Authority, 2003); https://hdl.handle.net/11017/669

  • 12.

    Whiteway, T., Smithers, S., Potter, A. & Brooke, B. Geological and Geomorphological Features of Outstanding Universal Value in the Great Barrier Reef World Heritage Area. Report prepared for SEWPaC (Coastal Marine and Climate Change Group, Geoscience Australia and School of Earth and Environmental Sciences, James Cook Univ., 2013).

  • 13.

    Mathews, E., Heap, A. & Woods, M. Inter-Reefal Seabed Sediments and Geomorphology of the Great Barrier Reef: A Spatial Analysis (Geoscience Australia, 2007).

  • 14.

    Huang, Z. et al. A conceptual surrogacy framework to evaluate the habitat potential of submarine canyons. Prog. Oceanogr. 169, 199–213 (2018).

    Article  Google Scholar 

  • 15.

    McNeil, M. A., Webster, J. M., Beaman, R. J. & Graham, T. L. New constraints on the spatial distribution and morphology of the Halimeda bioherms of the Great Barrier Reef, Australia. Coral Reefs 35, 1343–1355 (2016).

    Article  Google Scholar 

  • 16.

    Cumings, E. R. Reefs or bioherms? Geol. Soc. Am. Bull. 43, 331–352 (1932).

    Article  Google Scholar 

  • 17.

    Klement, K. W. Practical classification of reefs and banks, bioherms and biostromes. Am. Assoc. Pet. Geol. Bull. 51, 167–168 (1967).

  • 18.

    Beaman, R. J. High-Resolution Depth Model for the Great Barrier Reef—30m (Geoscience Australia 2017); https://doi.org/10.4225/25/5a207b36022d2

  • 19.

    Orme, G. The sedimentological importance of Halimeda in the development of back reef lithofacies, northern Great Barrier Reef (Australia). In Proc. 5th International Coral Reef Symposium 31–37 (1985).

  • 20.

    Orme, G. R. & Salama, M. S. Form and seismic stratigraphy of Halimeda banks in part of the northern Great Barrier Reef Province. Coral Reefs 6, 131–137 (1988).

    Article  Google Scholar 

  • 21.

    Davies, P. in Encyclopaedia of Modern Coral Reefs—Structure, Form and Process (ed. Hopley, D.) 539–549 (Springer, 2011).

  • 22.

    Marshall, J. F. & Davies, P. J. Halimeda bioherms of the northern Great Barrier Reef. Coral Reefs 6, 139–148 (1988).

    Article  Google Scholar 

  • 23.

    McNeil, M. A., Nothdurft, L. D., Dyriw, N. J., Webster, J. M. & Beaman, R. J. Morphotype differentiation in the Great Barrier Reef Halimeda bioherm carbonate factory: internal architecture and surface geomorphometrics. Depos. Rec. https://doi.org/10.1002/dep2.122 (2020).

  • 24.

    Great Barrier Reef Outlook Report 2009 (Great Barrier Reef Marine Park Authority, 2009).

  • 25.

    Great Barrier Reef Outlook Report 2014 (Great Barrier Reef Marine Park Authority, 2014).

  • 26.

    Ferrari, R. et al. Habitat structural complexity metrics improve predictions of fish abundance and distribution. Ecography 41, 1077–1091 (2017).

    Article  Google Scholar 

  • 27.

    Ferrari, R. et al. Quantifying the response of structural complexity and community composition to environmental change in marine communities. Glob. Change Biol. 22, 1965–1975 (2016).

    Article  Google Scholar 

  • 28.

    Dustan, P., Doherty, O. & Pardede, S. Digital reef rugosity estimates coral reef habitat complexity. PLoS ONE 8, e57386 (2013).

    CAS  Article  Google Scholar 

  • 29.

    Pyle, R. L. & Copus, J. M. in Mesophotic Coral Ecosystems (eds Loya, Y. et al.) 3–27 (Springer International Publishing, 2019).

  • 30.

    Hopley, D., Smithers, S. G. & Parnell, K. E. The Geomorphology of the Great Barrier Reef: Development, Diversity, and Change (Cambridge Univ. Press, 2007).

  • 31.

    Colwell, R. K. & Coddington, J. A. Estimating terrestrial biodiversity through extrapolation. Philos. Trans. R. Soc. Lond. B Biol. Sci 345, 101–118 (1994).

    CAS  Article  Google Scholar 

  • 32.

    Gotelli, N. J. & Colwell, R. K. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol. Lett. 4, 379–391 (2001).

    Article  Google Scholar 

  • 33.

    Chao, A. Estimating the population size for capture–recapture data with unequal catchability. Biometrics 43, 783–791 (1987).

    CAS  Article  Google Scholar 

  • 34.

    IUCN Red List of Threatened Species. Version 20202 (IUCN, 2020); https://www.iucnredlist.org

  • 35.

    Obura, D., Fenner, D., Hoeksema, B., Devantier, L. & Sheppard, C. Tubipora musica. IUCN Red List of Threatened Species 2008: e.T133065A3589084 (IUCN, 2008); https://doi.org/10.2305/IUCN.UK.2008.RLTS.T133065A3589084.en

  • 36.

    Turak, E., Sheppard, C. & Wood, E. Catalaphyllia jardinei. IUCN Red List of Threatened Species 2008: e.T132890A3479919 (IUCN, 2008); https://doi.org/10.2305/IUCN.UK.2008.RLTS.T132890A3479919.en

  • 37.

    Cappo, M. & Kelley, R. in Oceanographic Processes of Coral Reefs: Physical and Biological Links in the Great Barrier Reef (ed. Wolanski, E.) 161–187(CRC Press, 2000).

  • 38.

    Cappo, M., De’ath, G. & Speare, P. Inter-reef vertebrate communities of the Great Barrier Reef Marine Park determined by baited remote underwater video stations. Mar. Ecol. Prog. Ser. 350, 209–221 (2007).

    Article  Google Scholar 

  • 39.

    Sambrook, K. et al. Beyond the reef: the widespread use of non-reef habitats by coral reef fishes. Fish Fish. (Oxf.) 20, 903–920 (2019).

    Article  Google Scholar 

  • 40.

    Hurrey, L. P., Pitcher, C. R., Lovelock, C. E. & Schmidt, S. Macroalgal species richness and assemblage composition of the Great Barrier Reef seabed. Mar. Ecol. Prog. Ser. 492, 69–83 (2013).

    Article  Google Scholar 

  • 41.

    Kämpf, J. & Chapman, P. Upwelling Systems of the World: A Scientific Journey to the Most Productive Marine Ecosystems (Springer International Publishing, 2016).

  • 42.

    Wolanski, E., Drew, E., Abel, K. M. & O’Brien, J. Tidal jets, nutrient upwelling and their influence on the productivity of the alga Halimeda in the Ribbon Reefs, Great Barrier Reef. Estuar. Coast. Shelf Sci. 26, 169–201 (1988).

    CAS  Article  Google Scholar 

  • 43.

    Andrews, J. C. & Gentien, P. Upwelling as a source of nutrients for the Great Barrier Reef ecosystems: a solution to Darwin’s question?. Mar. Ecol. Prog. Ser. 8, 257–269 (1982).

    Article  Google Scholar 

  • 44.

    Benthuysen, J. A., Tonin, H., Brinkman, R., Herzfeld, M. & Steinberg, C.Intrusive upwelling in the Central Great Barrier Reef. J. Geophys. Res. Oceans 121, 8395–8416 (2016).

    Article  Google Scholar 

  • 45.

    Berkelmans, R., Weeks, S. J. & Steinberg, C. R. Upwelling linked to warm summers and bleaching on the Great Barrier Reef. Limnol. Oceanogr. 55, 2634–2644 (2010).

    Article  Google Scholar 

  • 46.

    Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).

    CAS  Article  Google Scholar 

  • 47.

    Bridge, T. C. L., Hughes, T. P., Guinotte, J. M. & Bongaerts, P. Call to protect all coral reefs. Nat. Clim. Change 3, 528–530 (2013).

    Article  Google Scholar 

  • 48.

    Slattery, M., Lesser, M. P., Brazeau, D., Stokes, M. D. & Leichter, J. J.Connectivity and stability of mesophotic coral reefs. J. Exp. Mar. Biol. Ecol. 408, 32–41(2011).

    Article  Google Scholar 

  • 49.

    Campbell, J. E., Fisch, J., Langdon, C. & Paul, V. J. Increased temperature mitigates the effects of ocean acidification in calcified green algae (Halimeda spp.). Coral Reefs 35, 357–368 (2016).

    Article  Google Scholar 

  • 50.

    Mongin, M. et al. The exposure of the Great Barrier Reef to ocean acidification. Nat. Commun. 7, 10732 (2016).

    CAS  Article  Google Scholar 

  • 51.

    Price, N. N., Hamilton, S. L., Tootell, J. S. & Smith, J. E. Species-specific consequences of ocean acidification for the calcareous tropical green algae Halimeda. Mar. Ecol. Prog. Ser. 440, 67–78 (2011).

    CAS  Article  Google Scholar 

  • 52.

    Sinutok, S., Hill, R., Doblin, M. A., Kühl, M. & Ralph, P. J. Microenvironmental changes support evidence of photosynthesis and calcification inhibition in Halimeda under ocean acidification and warming. Coral Reefs 31, 1201–1213 (2012).

    Article  Google Scholar 

  • 53.

    Wizemann, A., Meyer, F. W., Hofmann, L. C., Wild, C. & Westphal, H. Ocean acidification alters the calcareous microstructure of the green macro-alga Halimeda opuntia. Coral Reefs 34, 941–954 (2015).

    Article  Google Scholar 

  • 54.

    Smithers, S., Harvey, N., Hopley, D. & Woodroffe, C. D. in Climate Change and the Great Barrier Reef: A Vulnerability Assessment (eds Johnson, J. E. & Marshall, P. A.) 667–716 (Great Barrier Reef Marine Park Authority, 2007).

  • 55.

    Cappo, M., Speare, P. & De’ath, G. Comparison of baited remote underwater video stations (BRUVS) and prawn (shrimp) trawls for assessments of fish biodiversity in inter-reefal areas of the Great Barrier Reef Marine Park. J. Exp. Mar. Biol. Ecol. 302, 123–152 (2004).

    Article  Google Scholar 

  • 56.

    Pitcher, C. R. GBR Seabed Biodiversity Mapping Project: Phase 1. Draft Report to CRC-Reef (Australian Institute of Marine Science, 2002).

  • 57.

    Ugland, K. I., Gray, J. S. & Ellingsen, K. E. The species–accumulation curve and estimation of species richness. J. Anim. Ecol. 72, 888–897 (2003).

    Article  Google Scholar 

  • 58.

    Clarke, K. & Gorley, R. PRIMER v7: User Manual/Tutorial (PRIMER-e, 2015).

  • 59.

    Clarke, K. R., Gorley, R. N., Somerfield, P. J. & Warwick, R. M. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation 3rd edn (PRIMER-e, 2014).

  • 60.

    Ridgway, K. R., Dunn, J. R. & Wilkin, J. L. Ocean interpolation by four-dimensional weighted least squares—application to the waters around Australasia. J. Atmos. Ocean. Technol. 19, 1357–1375 (2002).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    DNA traces the origin of honey by identifying plants, bacteria and fungi

    SMART develops analytical tools to enable next-generation agriculture