in

Inter-sexual and inter-generation differences in dispersal of a bivoltine butterfly

  • 1.

    Høye, T. T. et al. Phenology of high-arctic butterflies and their floral resources: Species-specific responses to climate change. Curr. Zool. 60, 243–251 (2014).

    Article 

    Google Scholar 

  • 2.

    Bell, J. R. et al. Spatial and habitat variation in aphid, butterfly, moth and bird phenologies over the last half century. Glob. Change Biol. 25, 1982–1994 (2019).

    ADS 
    Article 

    Google Scholar 

  • 3.

    Lewins, R. Evolution in Changing Environments: Some Theoretical Explorations (Princeton University Press, 1968).

    Google Scholar 

  • 4.

    Zografou, K. et al. Who flies first? Habitat-specific phenological shifts of butterflies and orthopterans in the light of climate change: A case study from the south-east Mediterranean. Ecol. Entomol. 40, 562–574 (2015).

    Article 

    Google Scholar 

  • 5.

    Yamamura, N. & Kiritani, K. A simple method to estimate the potential increase in the number of generations under global warming in temperate zones. Appl. Entomol. Zool. 33, 289–298 (1998).

    Article 

    Google Scholar 

  • 6.

    Barton, M. G. & Terblanche, J. S. Predicting performance and survival across topographically heterogeneous landscapes: The global pest insect Helicoverpa armigera (Hubner, 1808) (Lepidoptera: Noctuidae). Aus. Entomol. 53, 249–258 (2014).

    Article 

    Google Scholar 

  • 7.

    Tauber, M. J., Tauber, C. A. & Masaki, S. Seasonal Adaptations Of Insects (Oxford University Press on Demand, 1986).

    Google Scholar 

  • 8.

    Altermatt, F. Climatic warming increases voltinism in European butterflies and moths. Proc. R. Soc. B. 277, 1281–1287 (2010).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 9.

    Lees, A. D. The physiology and biochemistry of diapause. Annu. Rev. Entomol. 1, 1–16 (1956).

    CAS 
    Article 

    Google Scholar 

  • 10.

    Roff, D. A. & Fairbairn, D. J. Wing dimorphisms and the evolution of migratory polymorphisms among the Insecta. Am. Zool. 31, 243–251 (1991).

    Article 

    Google Scholar 

  • 11.

    Van Dyck, H. & Wiklund, C. Seasonal butterfly design: MORPHOLOGICAL plasticity among three developmental pathways relative to sex, flight and thermoregulation. J. Evol. Biol. 15, 216–225 (2002).

    Article 

    Google Scholar 

  • 12.

    Fric, Z. & Konvicka, M. Generations of the polyphenic butterfly Araschnia levana differ in body design. Evol. Ecol. Res. 4, 1017–1032 (2002).

    Google Scholar 

  • 13.

    Urquhart, F. A. The Monarch Butterfly (University of Toronto Press, 1960).

    Book 

    Google Scholar 

  • 14.

    Stefanescu, C. The nature of migration in the red admiral butterfly Vanessa atalanta: Evidence from the population ecology in its southern range. Ecol. Entomol. 26, 525–536 (2001).

    Article 

    Google Scholar 

  • 15.

    Stefanescu, C., Askew, R. R., Corbera, J. & Shaw, M. R. Parasitism and migration in southern Palaearctic populations of the painted lady butterfly, Vanessa cardui (Lepidoptera: Nymphalidae). Eur. J. Entomol. 109, 85–94 (2012).

    Article 

    Google Scholar 

  • 16.

    Ohsaki, N. Comparative population studies of three Pieris butterflies, P. rapae, P. melete and P. napi, living in the same area. II. Utilization of patchy habitats by adults through migratory and non-migratory movements. Res. Popul. Ecol. 22, 163–183 (1980).

    Article 

    Google Scholar 

  • 17.

    Pollard, E., Greatorex-Davies, J. N. & Thomas, J. A. Drought reduces breeding success of the butterfly Aglais urticae. Ecol. Entomol. 22, 315–318 (1997).

    Article 

    Google Scholar 

  • 18.

    Matthysen, E. Density-dependent dispersal in birds and mammals. Ecography 28, 403–416 (2005).

    Article 

    Google Scholar 

  • 19.

    Kim, S. Y., Torres, R. & Drummond, H. Simultaneous positive and negative density-dependent dispersal in a colonial bird species. Ecology 90, 230–239 (2009).

    PubMed 
    Article 

    Google Scholar 

  • 20.

    Nowicki, P. & Vrabec, V. Evidence for positive density dependent emigration in butterfly metapopulations. Oecologia 167, 657–665 (2011).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 21.

    Plazio, E., Margol, T. & Nowicki, P. Intersexual differences in density-dependent dispersal and their evolutionary drivers. J. Evol. Biol. 33, 1495–1506 (2020).

    PubMed 
    Article 

    Google Scholar 

  • 22.

    Brown, I. & Ehrlich, P. Population biology of the checkerspot butterfly, Euphydryas chalcedona structure of the Jasper Ridge colony. Oecologia 47, 239–251 (1980).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • 23.

    Hanski, I., Kuussaari, M. & Nieminen, M. Metapopulation structure and migration in the butterfly Melitaea cinxia. Ecology 75, 747–762 (1994).

    Article 

    Google Scholar 

  • 24.

    Petit, S., Moilanen, A., Hanski, I. & Baguette, M. Metapopulation dynamics of the bog fritillary butterfly, movements between habitat patches. Oikos 92, 491–500 (2001).

    Article 

    Google Scholar 

  • 25.

    Enfjäll, K. & Leimar, O. Density-dependent dispersal in the Glanville fritillary, Melitaea cinxia. Oikos 108, 465–472 (2005).

    Article 

    Google Scholar 

  • 26.

    Schtickzelle, N., Mennechez, G. & Baguette, M. Dispersal depression with habitat fragmentation in the bog fritillary butterfly. Ecology 87, 1057–1065 (2006).

    PubMed 
    Article 

    Google Scholar 

  • 27.

    Habel, J. C., Meyer, M., & Schmitt, T. Jewels In The Mist. A Synopsis On The Endangered Violet Copper Butterfly Lycaena helle (Pensoft, 2014).

  • 28.

    Martin, Y., Habel, J. C., Van Dyck, H. & Titeux, N. Losing genetic uniqueness under global change: the Violet Copper (Lycaena helle) in Europe. In Jewels In The Mist. A Synopsis On The Endangered Violet Copper Butterfly Lycaena helle. (ed. Habel, J. C., Meyer, M. & Schmitt, T.) 165–184 (Pensoft, 2014).

  • 29.

    Nabielec, J. & Nowicki, P. Drivers of local densities of endangered Lycaena helle butterflies in a fragmented landscape. Popul. Ecol. 57, 649–656 (2015).

    Article 

    Google Scholar 

  • 30.

    Bauerfeind, S. S., Theisen, A. & Fischer, K. Patch occupancy in the endangered butterfly Lycaena helle in fragmented landscape: effects of habitat quality, patch size and isolation. J. Insect. Conserv. 13, 271–277 (2009).

    Article 

    Google Scholar 

  • 31.

    Habel, J. C., Rodder, D., Schmitt, T. & Néves, G. Global warming will affect the genetic diversity and uniqueness of Lycaena helle populations. Glob. Change Biol. 17, 194–205 (2011).

    ADS 
    Article 

    Google Scholar 

  • 32.

    Van Helsdingen, P. J., Willemse, L. & Speight, M. C. D. Background Information On Invertebrates Of The Habitats Directive And The Bern Convention. Crustacea, Coleoptera And Lepidoptera. Vol. 2 (Council of Europe Publishing, 1996)

  • 33.

    Van Swaay, C. et al. European Red List Of Butterfies. (Publications Office of the European Union, 2010).

  • 34.

    Fischer, K., Beinlich, B. & Plachter, H. Population structure, mobility and habitat preferences of the violet copper Lycaena helle (Lepidoptera: Lyceanidae) in Western Germany: Implications for conservation. J. Insect. Conserv. 3, 43–52 (1999).

    Article 

    Google Scholar 

  • 35.

    Kudłek, J & Pępkowska, A. Natura 2000 Standard Data Form For SCI Dębnicko-Tyniecki Obszar Łąkowy PLH 120065 (GDOŚ, 2008).

  • 36.

    Begon, M. Investigating Animal Abundance. Capture-recapture For Biologists. (Edward Arnold (Publishers) Ltd., 1979).

  • 37.

    Cerrato, C., Lai, V., Balletto, E. & Bonelli, S. Direct and indirect effects of weather variability in a specialist butterfly. Ecol. Entomol. 41, 263–275 (2016).

    Article 

    Google Scholar 

  • 38.

    Hanski, I., Alho, J. & Moilanen, A. Estimating the parameters of survival and migration of individuals in metapopulations. Ecology 81, 239–251 (2000).

    Article 

    Google Scholar 

  • 39.

    Schwarz, C. J. & Arnason, A. N. A general methodology for the analysis of capture-recapture experiments in open populations. Biometrics 52, 860–873 (1996).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • 40.

    Bubova, T., Kulma, M., Vrabec, V. & Nowicki, P. Adult longevity and its relationship with conservation status in European butterflies. J. Insect Conserv. 20, 1021–1032 (2016).

    Article 

    Google Scholar 

  • 41.

    Hambäck, P. A. & Englund, G. Patch area, population density and the scaling of migration rates: The resource concentration hypothesis revisited. Ecol. Lett. 8, 1057–1065 (2005).

    Article 

    Google Scholar 

  • 42.

    Matter, S. F., Roland, J., Moilanen, A. & Hanski, I. Migration and survival of Parnassius smintheus: detecting effects of habitat for individual butterflies. Ecol. Appl. 14, 1526–1534 (2004).

    Article 

    Google Scholar 

  • 43.

    Dempster, J. P. & Pollard, E. Spatial heterogeneity, stochasticity and the detection of density dependence in animal populations. Oikos 46, 413–416 (1986).

    Article 

    Google Scholar 

  • 44.

    Gros, A., Hovestadt, T. & Poethke, H. J. Evolution of sex-biased dispersal: the role of sex-specific dispersal costs, demographic stochasticity, and inbreeding. Ecol. Model. 219, 226–233 (2008).

    MATH 
    Article 

    Google Scholar 

  • 45.

    Shapiro, A. M. The role of sexual behavior in density related dispersal of pierid butterflies. Am. Nat. 104, 367–372 (1970).

    Article 

    Google Scholar 

  • 46.

    Odendaal, F. J., Turchin, P. & Stermitz, F. R. Influence of host-plant density and male harassment on the distribution of female Euphydryas anicia (Nymphalidae). Oecologia 78, 283–288 (1989).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 47.

    Baguette, M., Convie, I. & Neve, G. Male density affects female spatial behaviour in the butterfly Proclossiana eunomia. Acta. Oecol. (Montrouge) 17, 225–232 (1996).

    Google Scholar 

  • 48.

    Baguette, M., Vansteenwegen, C., Convi, I. & Neve, G. Sex-biased density-dependent migration in a metapopulation of the butterfly Proclossiana eunomia. Acta. Oecol. (Montrouge) 19, 17–24 (1998).

    ADS 
    Article 

    Google Scholar 

  • 49.

    Matthysen, E. Multicausality of dispersal: a review. In Dispersal Ecology And Evolution (ed. Clobert, J., Baguette, M., Benton, T. G. & Bullock, J. M.) 3–18 (Oxford University Press, 2012).

  • 50.

    Li, X. Y. & Kokko, H. Sex-biased dispersal: a review of the theory. Biol. Rev. 94, 721–736 (2019).

    PubMed 
    Article 

    Google Scholar 

  • 51.

    Dethier, V. & MacArthur, R. A field’s capacity to support a butterfly population. Nature 201, 728–729 (1964).

    ADS 
    Article 

    Google Scholar 

  • 52.

    Baker, R. The dilemma: when and how to go or stay. In The Biology Of Butterflies. Symposium Of The Royal Entomological Society Of London. Number 11 (ed. Vane-Wright, R. I. & Ackery, P. R.) 279–296 (Academic Press, 1984).

  • 53.

    Rausher, M. Egg recognition: Its advantage to a butterfly. Anim. Behav. 27, 1034–1040 (1979).

    Article 

    Google Scholar 

  • 54.

    Ray, C., Gilpin, M. & Smith, A. The effect of conspecific attraction on metapopulation dynamics. Biol. J. Linn. Soc. Lond. 42, 123–134 (1991).

    Article 

    Google Scholar 

  • 55.

    Kuussaari, M., Nieminen, M. & Hanski, I. An experimental study of migration in the Glanville fritillary butterfly Melitaea cinxia. J. Anim. Ecol. 65, 791–801 (1996).

    Article 

    Google Scholar 

  • 56.

    Fric, Z. & Konvicka, M. Adult population structure and behaviour of two seasonal generations of the European Map Butterfly, Araschnia levana, species with seasonal polyphenism (Nymphalidae). Nota Lepid. 23, 2–25 (2000).

    Google Scholar 

  • 57.

    Gilchrist, G. W. The consequences of sexual dimorphism in body size for butterfly flight and thermoregulation. Funct. Ecol. 4, 475–487 (1990).

    Article 

    Google Scholar 

  • 58.

    Klockmann, M., Karajoli, F., Kuczyk, J., Reimer, S. & Fischer, K. Fitness implications of simulated climate change in three species of copper butterflies (Lepidoptera: Lycaenidae). Biol. J. Linn. Soc. Lond. 120, 125–143 (2017).

    Google Scholar 

  • 59.

    Piaggio, A. J, Navo, K. W. & Stihler, C. W. Intraspecific comparison of population structure, genetic diversity, and dispersal among three subspecies of Townsend’s big-eared bats, Corynorhinus townsendii townsendii, C. t. pallescens, and the endangered C. t. virginianus. Conserv. Genet. 10, 143–159 (2009).

  • 60.

    Solmsen, N., Johannesen, J. & Schradin, C. Highly asymmetric fine-scale genetic structure between sexes of African striped mice and indication for condition dependent alternative male dispersal tactics. Mol. Ecol. 20, 1624–1634 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 61.

    Bergman, K. O. & Landin, J. Population structure and movements of a threatened butterfly (Lopinga achine) in a fragmented landscape in Sweden. Biol. Conserv. 108, 361–369 (2002).

    Article 

    Google Scholar 

  • 62.

    Craioveanu, C., Sitar, C. & Rakosy, L. Mobility, behaviour and phenology of the Violet Copper Lycaena helle in North-Western Romania. In Jewels In The Mist. A Synopsis On The Endangered Violet Copper Butterfly Lycaena helle. (ed. Habel, J. C., Meyer, M. & Schmitt, T.) 91–105 (Pensoft, 2014).

  • 63.

    Turlure, C., Van Dyck, H., Goffart, P., & Schtickzelle, N. Resource-based habitat use in Lycaena helle: Significance of a functional, ecological niche-oriented approach. In Jewels In The Mist. A Synopsis On The Endangered Violet Copper Butterfly Lycaena helle. (ed. Habel, J. C., Meyer, M. & Schmitt, T.) 67–86 (Pensoft, 2014).

  • 64.

    Hanski, I., & Gaggiotti, O. E. Ecology, Genetics and Evolution Of Metapopulations (Elsevier Academic Press, 2004).


  • Source: Ecology - nature.com

    MIT students and alumni “hack” Hong Kong Kowloon East

    Coexistence holes fill a gap in community assembly theory