Høye, T. T. et al. Phenology of high-arctic butterflies and their floral resources: Species-specific responses to climate change. Curr. Zool. 60, 243–251 (2014).
Google Scholar
Bell, J. R. et al. Spatial and habitat variation in aphid, butterfly, moth and bird phenologies over the last half century. Glob. Change Biol. 25, 1982–1994 (2019).
Google Scholar
Lewins, R. Evolution in Changing Environments: Some Theoretical Explorations (Princeton University Press, 1968).
Zografou, K. et al. Who flies first? Habitat-specific phenological shifts of butterflies and orthopterans in the light of climate change: A case study from the south-east Mediterranean. Ecol. Entomol. 40, 562–574 (2015).
Google Scholar
Yamamura, N. & Kiritani, K. A simple method to estimate the potential increase in the number of generations under global warming in temperate zones. Appl. Entomol. Zool. 33, 289–298 (1998).
Google Scholar
Barton, M. G. & Terblanche, J. S. Predicting performance and survival across topographically heterogeneous landscapes: The global pest insect Helicoverpa armigera (Hubner, 1808) (Lepidoptera: Noctuidae). Aus. Entomol. 53, 249–258 (2014).
Google Scholar
Tauber, M. J., Tauber, C. A. & Masaki, S. Seasonal Adaptations Of Insects (Oxford University Press on Demand, 1986).
Altermatt, F. Climatic warming increases voltinism in European butterflies and moths. Proc. R. Soc. B. 277, 1281–1287 (2010).
Google Scholar
Lees, A. D. The physiology and biochemistry of diapause. Annu. Rev. Entomol. 1, 1–16 (1956).
Google Scholar
Roff, D. A. & Fairbairn, D. J. Wing dimorphisms and the evolution of migratory polymorphisms among the Insecta. Am. Zool. 31, 243–251 (1991).
Google Scholar
Van Dyck, H. & Wiklund, C. Seasonal butterfly design: MORPHOLOGICAL plasticity among three developmental pathways relative to sex, flight and thermoregulation. J. Evol. Biol. 15, 216–225 (2002).
Google Scholar
Fric, Z. & Konvicka, M. Generations of the polyphenic butterfly Araschnia levana differ in body design. Evol. Ecol. Res. 4, 1017–1032 (2002).
Urquhart, F. A. The Monarch Butterfly (University of Toronto Press, 1960).
Google Scholar
Stefanescu, C. The nature of migration in the red admiral butterfly Vanessa atalanta: Evidence from the population ecology in its southern range. Ecol. Entomol. 26, 525–536 (2001).
Google Scholar
Stefanescu, C., Askew, R. R., Corbera, J. & Shaw, M. R. Parasitism and migration in southern Palaearctic populations of the painted lady butterfly, Vanessa cardui (Lepidoptera: Nymphalidae). Eur. J. Entomol. 109, 85–94 (2012).
Google Scholar
Ohsaki, N. Comparative population studies of three Pieris butterflies, P. rapae, P. melete and P. napi, living in the same area. II. Utilization of patchy habitats by adults through migratory and non-migratory movements. Res. Popul. Ecol. 22, 163–183 (1980).
Google Scholar
Pollard, E., Greatorex-Davies, J. N. & Thomas, J. A. Drought reduces breeding success of the butterfly Aglais urticae. Ecol. Entomol. 22, 315–318 (1997).
Google Scholar
Matthysen, E. Density-dependent dispersal in birds and mammals. Ecography 28, 403–416 (2005).
Google Scholar
Kim, S. Y., Torres, R. & Drummond, H. Simultaneous positive and negative density-dependent dispersal in a colonial bird species. Ecology 90, 230–239 (2009).
Google Scholar
Nowicki, P. & Vrabec, V. Evidence for positive density dependent emigration in butterfly metapopulations. Oecologia 167, 657–665 (2011).
Google Scholar
Plazio, E., Margol, T. & Nowicki, P. Intersexual differences in density-dependent dispersal and their evolutionary drivers. J. Evol. Biol. 33, 1495–1506 (2020).
Google Scholar
Brown, I. & Ehrlich, P. Population biology of the checkerspot butterfly, Euphydryas chalcedona structure of the Jasper Ridge colony. Oecologia 47, 239–251 (1980).
Google Scholar
Hanski, I., Kuussaari, M. & Nieminen, M. Metapopulation structure and migration in the butterfly Melitaea cinxia. Ecology 75, 747–762 (1994).
Google Scholar
Petit, S., Moilanen, A., Hanski, I. & Baguette, M. Metapopulation dynamics of the bog fritillary butterfly, movements between habitat patches. Oikos 92, 491–500 (2001).
Google Scholar
Enfjäll, K. & Leimar, O. Density-dependent dispersal in the Glanville fritillary, Melitaea cinxia. Oikos 108, 465–472 (2005).
Google Scholar
Schtickzelle, N., Mennechez, G. & Baguette, M. Dispersal depression with habitat fragmentation in the bog fritillary butterfly. Ecology 87, 1057–1065 (2006).
Google Scholar
Habel, J. C., Meyer, M., & Schmitt, T. Jewels In The Mist. A Synopsis On The Endangered Violet Copper Butterfly Lycaena helle (Pensoft, 2014).
Martin, Y., Habel, J. C., Van Dyck, H. & Titeux, N. Losing genetic uniqueness under global change: the Violet Copper (Lycaena helle) in Europe. In Jewels In The Mist. A Synopsis On The Endangered Violet Copper Butterfly Lycaena helle. (ed. Habel, J. C., Meyer, M. & Schmitt, T.) 165–184 (Pensoft, 2014).
Nabielec, J. & Nowicki, P. Drivers of local densities of endangered Lycaena helle butterflies in a fragmented landscape. Popul. Ecol. 57, 649–656 (2015).
Google Scholar
Bauerfeind, S. S., Theisen, A. & Fischer, K. Patch occupancy in the endangered butterfly Lycaena helle in fragmented landscape: effects of habitat quality, patch size and isolation. J. Insect. Conserv. 13, 271–277 (2009).
Google Scholar
Habel, J. C., Rodder, D., Schmitt, T. & Néves, G. Global warming will affect the genetic diversity and uniqueness of Lycaena helle populations. Glob. Change Biol. 17, 194–205 (2011).
Google Scholar
Van Helsdingen, P. J., Willemse, L. & Speight, M. C. D. Background Information On Invertebrates Of The Habitats Directive And The Bern Convention. Crustacea, Coleoptera And Lepidoptera. Vol. 2 (Council of Europe Publishing, 1996)
Van Swaay, C. et al. European Red List Of Butterfies. (Publications Office of the European Union, 2010).
Fischer, K., Beinlich, B. & Plachter, H. Population structure, mobility and habitat preferences of the violet copper Lycaena helle (Lepidoptera: Lyceanidae) in Western Germany: Implications for conservation. J. Insect. Conserv. 3, 43–52 (1999).
Google Scholar
Kudłek, J & Pępkowska, A. Natura 2000 Standard Data Form For SCI Dębnicko-Tyniecki Obszar Łąkowy PLH 120065 (GDOŚ, 2008).
Begon, M. Investigating Animal Abundance. Capture-recapture For Biologists. (Edward Arnold (Publishers) Ltd., 1979).
Cerrato, C., Lai, V., Balletto, E. & Bonelli, S. Direct and indirect effects of weather variability in a specialist butterfly. Ecol. Entomol. 41, 263–275 (2016).
Google Scholar
Hanski, I., Alho, J. & Moilanen, A. Estimating the parameters of survival and migration of individuals in metapopulations. Ecology 81, 239–251 (2000).
Google Scholar
Schwarz, C. J. & Arnason, A. N. A general methodology for the analysis of capture-recapture experiments in open populations. Biometrics 52, 860–873 (1996).
Google Scholar
Bubova, T., Kulma, M., Vrabec, V. & Nowicki, P. Adult longevity and its relationship with conservation status in European butterflies. J. Insect Conserv. 20, 1021–1032 (2016).
Google Scholar
Hambäck, P. A. & Englund, G. Patch area, population density and the scaling of migration rates: The resource concentration hypothesis revisited. Ecol. Lett. 8, 1057–1065 (2005).
Google Scholar
Matter, S. F., Roland, J., Moilanen, A. & Hanski, I. Migration and survival of Parnassius smintheus: detecting effects of habitat for individual butterflies. Ecol. Appl. 14, 1526–1534 (2004).
Google Scholar
Dempster, J. P. & Pollard, E. Spatial heterogeneity, stochasticity and the detection of density dependence in animal populations. Oikos 46, 413–416 (1986).
Google Scholar
Gros, A., Hovestadt, T. & Poethke, H. J. Evolution of sex-biased dispersal: the role of sex-specific dispersal costs, demographic stochasticity, and inbreeding. Ecol. Model. 219, 226–233 (2008).
Google Scholar
Shapiro, A. M. The role of sexual behavior in density related dispersal of pierid butterflies. Am. Nat. 104, 367–372 (1970).
Google Scholar
Odendaal, F. J., Turchin, P. & Stermitz, F. R. Influence of host-plant density and male harassment on the distribution of female Euphydryas anicia (Nymphalidae). Oecologia 78, 283–288 (1989).
Google Scholar
Baguette, M., Convie, I. & Neve, G. Male density affects female spatial behaviour in the butterfly Proclossiana eunomia. Acta. Oecol. (Montrouge) 17, 225–232 (1996).
Baguette, M., Vansteenwegen, C., Convi, I. & Neve, G. Sex-biased density-dependent migration in a metapopulation of the butterfly Proclossiana eunomia. Acta. Oecol. (Montrouge) 19, 17–24 (1998).
Google Scholar
Matthysen, E. Multicausality of dispersal: a review. In Dispersal Ecology And Evolution (ed. Clobert, J., Baguette, M., Benton, T. G. & Bullock, J. M.) 3–18 (Oxford University Press, 2012).
Li, X. Y. & Kokko, H. Sex-biased dispersal: a review of the theory. Biol. Rev. 94, 721–736 (2019).
Google Scholar
Dethier, V. & MacArthur, R. A field’s capacity to support a butterfly population. Nature 201, 728–729 (1964).
Google Scholar
Baker, R. The dilemma: when and how to go or stay. In The Biology Of Butterflies. Symposium Of The Royal Entomological Society Of London. Number 11 (ed. Vane-Wright, R. I. & Ackery, P. R.) 279–296 (Academic Press, 1984).
Rausher, M. Egg recognition: Its advantage to a butterfly. Anim. Behav. 27, 1034–1040 (1979).
Google Scholar
Ray, C., Gilpin, M. & Smith, A. The effect of conspecific attraction on metapopulation dynamics. Biol. J. Linn. Soc. Lond. 42, 123–134 (1991).
Google Scholar
Kuussaari, M., Nieminen, M. & Hanski, I. An experimental study of migration in the Glanville fritillary butterfly Melitaea cinxia. J. Anim. Ecol. 65, 791–801 (1996).
Google Scholar
Fric, Z. & Konvicka, M. Adult population structure and behaviour of two seasonal generations of the European Map Butterfly, Araschnia levana, species with seasonal polyphenism (Nymphalidae). Nota Lepid. 23, 2–25 (2000).
Gilchrist, G. W. The consequences of sexual dimorphism in body size for butterfly flight and thermoregulation. Funct. Ecol. 4, 475–487 (1990).
Google Scholar
Klockmann, M., Karajoli, F., Kuczyk, J., Reimer, S. & Fischer, K. Fitness implications of simulated climate change in three species of copper butterflies (Lepidoptera: Lycaenidae). Biol. J. Linn. Soc. Lond. 120, 125–143 (2017).
Piaggio, A. J, Navo, K. W. & Stihler, C. W. Intraspecific comparison of population structure, genetic diversity, and dispersal among three subspecies of Townsend’s big-eared bats, Corynorhinus townsendii townsendii, C. t. pallescens, and the endangered C. t. virginianus. Conserv. Genet. 10, 143–159 (2009).
Solmsen, N., Johannesen, J. & Schradin, C. Highly asymmetric fine-scale genetic structure between sexes of African striped mice and indication for condition dependent alternative male dispersal tactics. Mol. Ecol. 20, 1624–1634 (2011).
Google Scholar
Bergman, K. O. & Landin, J. Population structure and movements of a threatened butterfly (Lopinga achine) in a fragmented landscape in Sweden. Biol. Conserv. 108, 361–369 (2002).
Google Scholar
Craioveanu, C., Sitar, C. & Rakosy, L. Mobility, behaviour and phenology of the Violet Copper Lycaena helle in North-Western Romania. In Jewels In The Mist. A Synopsis On The Endangered Violet Copper Butterfly Lycaena helle. (ed. Habel, J. C., Meyer, M. & Schmitt, T.) 91–105 (Pensoft, 2014).
Turlure, C., Van Dyck, H., Goffart, P., & Schtickzelle, N. Resource-based habitat use in Lycaena helle: Significance of a functional, ecological niche-oriented approach. In Jewels In The Mist. A Synopsis On The Endangered Violet Copper Butterfly Lycaena helle. (ed. Habel, J. C., Meyer, M. & Schmitt, T.) 67–86 (Pensoft, 2014).
Hanski, I., & Gaggiotti, O. E. Ecology, Genetics and Evolution Of Metapopulations (Elsevier Academic Press, 2004).
Source: Ecology - nature.com