in

Intermediate ice scour disturbance is key to maintaining a peak in biodiversity within the shallows of the Western Antarctic Peninsula

  • 1.

    Dell, J. et al. Interaction diversity maintains resiliency in a frequently disturbed ecosystem. Front. Ecol. Evol. 7, 145 (2019).

    Article 

    Google Scholar 

  • 2.

    White, P. S. & Pickett, S. T. A. In The Ecology of Natural Disturbance and Patch Dynamics (eds S. T. A. Pickett & P. S. White) 3–13 (Academic Press, 1985).

  • 3.

    Newman, E. A. Disturbance ecology in the anthropocene. Front. Ecol. Evolut. https://doi.org/10.3389/fevo.2019.00147 (2019).

    Article 

    Google Scholar 

  • 4.

    Barnosky, A. D. et al. Approaching a state shift in Earth’s biosphere. Nature 486, 52–58 (2012).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 5.

    Yuan, Z., Jiao, F., Li, Y. & Kallenbach, R. L. Anthropogenic disturbances are key to maintaining the biodiversity of grasslands. Sci. Rep. 6, 22132 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 6.

    Hughes, A. R., Byrnes, J. E., Kimbro, D. L. & Stachowicz, J. J. Reciprocal relationships and potential feedbacks between biodiversity and disturbance. Ecol. Lett. 10, 849–864. https://doi.org/10.1111/j.1461-0248.2007.01075.x (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 7.

    Connell, J. H. & Slatyer, R. O. Mechanisms of succession in natural communities and their role in community stability and organization. Am. Nat. 111, 1119–1144 (1977).

    Article 

    Google Scholar 

  • 8.

    Connell, J. H. Diversity in tropical rain forests and coral reefs. Science 199, 1302–1310 (1978).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 9.

    Fox, J. W. The intermediate disturbance hypothesis should be abandoned. Trends Ecol. Evol. 28, 86–92. https://doi.org/10.1016/j.tree.2012.08.014 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 10.

    Sheil, D. & Burslem, D. F. Disturbing hypotheses in tropical forests. Trends Ecol. Evol. 18, 18–26 (2003).

    Article 

    Google Scholar 

  • 11.

    Teixidó, N., Garrabou, J., Gutt, J. & Arntz, W. E. Recovery in Antarctic benthos after iceberg disturbance: Trends in benthic composition, abundance and growth forms. Mar. Ecol. Prog. Ser. 278, 1–16. https://doi.org/10.3354/meps278001 (2004).

    ADS 
    Article 

    Google Scholar 

  • 12.

    Teixidó, N., Garrabou, J., Gutt, J. & Arntz, W. Iceberg disturbance and successional spatial patterns: the case of the shelf Antarctic benthic communities. Ecosystems 10, 143–158 (2007).

    Article 

    Google Scholar 

  • 13.

    Johst, K., Gutt, J., Wissel, C. & Grimm, V. Diversity and disturbances in the Antarctic megabenthos: Feasible versus theoretical disturbance ranges. Ecosystems 9, 1145–1155 (2006).

    Article 

    Google Scholar 

  • 14.

    Mackey, R. L. & Currie, D. J. The diversity-disturbance relationship: Is it generally strong and peaked?. Ecology 82, 3479–3492. https://doi.org/10.1890/0012-9658(2001) (2001).

    Article 

    Google Scholar 

  • 15.

    Huston, M. A. Disturbance, productivity, and species diversity: Empiricism vs. logic in ecological theory. Ecology 95, 2382–2396. https://doi.org/10.1890/13-1397.1 (2014).

    Article 

    Google Scholar 

  • 16.

    Smale, D. A., Brown, K. M., Barnes, D. K., Fraser, K. P. & Clarke, A. Ice scour disturbance in Antarctic waters. Science 321, 371. https://doi.org/10.1126/science.1158647 (2008).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 17.

    Griffiths, H. J., Danis, B. & Clarke, A. Quantifying Antarctic marine biodiversity: The SCAR-MarBIN data portal. Deep Sea Res. Part II 58, 18–29. https://doi.org/10.1016/j.dsr2.2010.10.008 (2011).

    ADS 
    Article 

    Google Scholar 

  • 18.

    Grange, L. J. & Smith, C. R. Megafaunal communities in rapidly warming fjords along the West Antarctic Peninsula: Hotspots of abundance and beta diversity. PLoS ONE 8, e77917 (2013).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 19.

    Gutt, J., Griffiths, H. J. & Jones, C. D. Circumpolar overview and spatial heterogeneity of Antarctic macrobenthic communities. Mar. Biodivers. 43, 481–487. https://doi.org/10.1007/s12526-013-0152-9 (2013).

    Article 

    Google Scholar 

  • 20.

    Potthoff, M., Johst, K. & Gutt, J. How to survive as a pioneer species in the Antarctic benthos: Minimum dispersal distance as a function of lifetime and disturbance. Polar Biol. 29, 543–551 (2006).

    Article 

    Google Scholar 

  • 21.

    Convey, P. et al. The spatial structure of Antarctic biodiversity. Ecol. Monogr. 84, 203–244 (2014).

    Article 

    Google Scholar 

  • 22.

    Peck, L. S., Brockington, S., Vanhove, S. & Beghyn, M. Community recovery following catastrophic iceberg impacts in a soft-sediment shallow-water site at Signy Island, Antarctica. Mar. Ecol Progr. Ser. 186, 1–8 (1999).

    ADS 
    Article 

    Google Scholar 

  • 23.

    Lee, H., Vanhove, S., Peck, L. & Vincx, M. Recolonisation of meiofauna after catastrophic iceberg scouring in shallow Antarctic sediments. Polar Biol. 24, 918–925. https://doi.org/10.1007/s003000100300 (2001).

    Article 

    Google Scholar 

  • 24.

    Armstrong, T. World Meteorological Organization. WMO sea-ice nomenclature. Terminology, codes and illustrated glossary. Edition 1970. Geneva, Secretariat of the World Meteorological Organization, 1970. [ix], 147 p. [including 175 photos]+ corrigenda slip. (WMO/OMM/BMO, No. 259, TP. 145.). J. Glaciol. 11, 148–149 (1972).

  • 25.

    Robinson, B. J., Barnes, D. K. & Morley, S. A. Disturbance, dispersal and marine assemblage structure: A case study from the nearshore Southern Ocean. Mar. Environ. Res. 160, 105025 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 26.

    Gutt, J., Starmans, A. & Dieckmann, G. Impact of iceberg scouring on polar benthic habitats. Mar. Ecol. Prog. Ser. 137, 311–316 (1996).

    ADS 
    Article 

    Google Scholar 

  • 27.

    Barnes, D. K. A. & Conlan, K. E. Disturbance, colonization and development of Antarctic benthic communities. Philos. Trans. R. Soc. Lond. B Biol. Sci. 362, 11–38. https://doi.org/10.1098/rstb.2006.1951 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 28.

    Smale, D. A. Ecological traits of benthic assemblages in shallow Antarctic waters: Does ice scour disturbance select for small, mobile, secondary consumers with high dispersal potential?. Polar Biol. 31, 1225–1231. https://doi.org/10.1007/s00300-008-0461-9 (2008).

    Article 

    Google Scholar 

  • 29.

    Barnes, D. K. A. The influence of ice on polar nearshore benthos. J. Mar. Biol. Assoc. U.K. 79, 401–407 (1999).

    Article 

    Google Scholar 

  • 30.

    Gutt, J. On the direct impact of ice on marine benthic communities, a review. Polar Biol. 24, 553–564 (2001).

    Article 

    Google Scholar 

  • 31.

    Barnes, D. K. A. & Tarling, G. A. Polar oceans in a changing climate. Curr. Biol. 27, R454–R460. https://doi.org/10.1016/j.cub.2017.01.045 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    Barnes, D. K. A., Fleming, A., Sands, C. J., Quartino, M. L. & Deregibus, D. Icebergs, sea ice, blue carbon and Antarctic climate feedbacks. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 376, 20170176. https://doi.org/10.1098/rsta.2017.0176 (2018).

    ADS 
    Article 

    Google Scholar 

  • 33.

    Cook, A. J., Fox, A. J., Vaughan, D. G. & Ferrigno, J. G. Retreating glacier fronts on the Antarctic Peninsula over the past half-century. Science 308, 541–544. https://doi.org/10.1126/science.1104235 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 34.

    Cook, A. et al. Ocean forcing of glacier retreat in the western Antarctic Peninsula. Science 353, 283–286 (2016).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 35.

    Clarke, A. et al. Climate change and the marine ecosystem of the western Antarctic Peninsula. Philos. Trans. R. Soc. Lond. B Biol. Sci. 362, 149–166. https://doi.org/10.1098/rstb.2006.1958 (2007).

    Article 
    PubMed 

    Google Scholar 

  • 36.

    Turner, J. & Comiso, J. Solve Antarctica’s sea-ice puzzle. Nat. News 547, 275 (2017).

    CAS 
    Article 

    Google Scholar 

  • 37.

    Meredith, M. P. & King, J. C. Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century. Geophys. Res. Lett. https://doi.org/10.1029/2005GL024042 (2005).

    Article 

    Google Scholar 

  • 38.

    Barnes, D. K. A. & Souster, T. Reduced survival of Antarctic benthos linked to climate-induced iceberg scouring. Nat. Clim. Chang. 1, 365–368. https://doi.org/10.1038/nclimate1232 (2011).

    ADS 
    Article 

    Google Scholar 

  • 39.

    Parkinson, C. L. Global sea ice coverage from satellite data: Annual cycle and 35-yr trends. J. Clim. 27, 9377–9382. https://doi.org/10.1175/jcli-d-14-00605.1 (2014).

    ADS 
    Article 

    Google Scholar 

  • 40.

    Rogers, A. et al. Antarctic futures: An assessment of climate-driven changes in ecosystem structure, function, and service provisioning in the Southern Ocean. Ann. Rev. Mar. Sci. 12, 87–120 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 41.

    Morley, S. A. et al. Global drivers on Southern Ocean ecosystems: Changing physical environments and anthropogenic pressures in an Earth system. Front. Mar. Sci. 7, 1097 (2020).

    Article 

    Google Scholar 

  • 42.

    Barnes, D. K. et al. Blue carbon gains from glacial retreat along Antarctic fjords: What should we expect?. Glob. Change Biol. 26, 2750–2755 (2020).

    ADS 
    Article 

    Google Scholar 

  • 43.

    Barnes D. K. A. Blue carbon on polar and subpolar seabeds. In Carbon capture, utilization and sequestration (InTech, 2018). https://doi.org/10.5772/intechopen.78237.

  • 44.

    Bowler, D. et al. The geography of the Anthropocene differs between the land and the sea. bioRxiv https://doi.org/10.1101/432880 (2019).

    Article 

    Google Scholar 

  • 45.

    Arntz, W., Brey, T. & Gallardo, V. Antarctic zoobenthos. Oceanogr. Mar. Biol. 32, 241–304 (1994).

    Google Scholar 

  • 46.

    Clarke, A. Marine benthic populations in Antarctica: Patterns and processes. Antarct. Res. Ser. 70, 373–388 (1996).

    Article 

    Google Scholar 

  • 47.

    Fillinger, L., Janussen, D., Lundälv, T. & Richter, C. Rapid glass sponge expansion after climate-induced Antarctic ice shelf collapse. Curr. Biol. 23, 1330–1334 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 48.

    Clarke, A., Meredith, M. P., Wallace, M. I., Brandon, M. A. & Thomas, D. N. Seasonal and interannual variability in temperature, chlorophyll and macronutrients in northern Marguerite Bay, Antarctica. Deep Sea Res. Part II 55, 1988–2006. https://doi.org/10.1016/j.dsr2.2008.04.035 (2008).

    ADS 
    Article 

    Google Scholar 

  • 49.

    Barnes, D. K. A. Iceberg killing fields limit huge potential for benthic blue carbon in Antarctic shallows. Glob. Chang. Biol. 23, 2649–2659. https://doi.org/10.1111/gcb.13523 (2017).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 50.

    Pinkerton, M., Bradford-Grieve, J., Bowden, D. & Cummings, V. Benthos: Trophic modelling of the Ross Sea. Support. Docum. CCAMLR Sci. 17, 1–31 (2010).

    Google Scholar 

  • 51.

    Pielou, E. Shannon’s formula as a measurement of species diversity: It’s use and disuse. Am. Nat. 100, 463–465 (1966).

    Article 

    Google Scholar 

  • 52.

    Fisher, R. A., Corbet, A. S. & Williams, C. B. The relation between the number of species and the number of individuals in a random sample of an animal population. J. Anim. Ecol. 1, 42–58 (1943).

    Article 

    Google Scholar 

  • 53.

    Everitt, B. & Skrondal, A. The Cambridge Dictionary of Statistics Vol. 106 (Cambridge University Press, Cambridge, 2002).

    MATH 

    Google Scholar 

  • 54.

    Smale, D. A., Barnes, D. K. A. & Fraser, K. P. P. The influence of ice scour on benthic communities at three contrasting sites at Adelaide Island, Antarctica. Aust. Ecol. 32, 878–888. https://doi.org/10.1111/j.1442-9993.2007.01776.x (2007).

    Article 

    Google Scholar 

  • 55.

    Peck, L. S., Convey, P. & Barnes, D. K. A. Environmental constraints on life histories in Antarctic ecosystems: Tempos, timings and predictability. Biol. Rev. 81, 75–109. https://doi.org/10.1017/s1464793105006871 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 56.

    Waller, C., Worland, M., Convey, P. & Barnes, D. Ecophysiological strategies of Antarctic intertidal invertebrates faced with freezing stress. Polar Biol. 29, 1077–1083 (2006).

    Article 

    Google Scholar 

  • 57.

    Barnes, D. K. A. Polar zoobenthos blue carbon storage increases with sea ice losses, because across-shelf growth gains from longer algal blooms outweigh ice scour mortality in the shallows. Glob. Chang Biol. 23, 5083–5091. https://doi.org/10.1111/gcb.13772 (2017).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 58.

    Smith, C. R., Mincks, S. & DeMaster, D. J. A synthesis of bentho-pelagic coupling on the Antarctic shelf: Food banks, ecosystem inertia and global climate change. Deep Sea Res. Part II 53, 875–894 (2006).

    ADS 
    Article 

    Google Scholar 

  • 59.

    Jansen, J. et al. Abundance and richness of key Antarctic seafloor fauna correlates with modelled food availability. Nat. Ecol. Evolut. 2, 71–80 (2018).

    Article 

    Google Scholar 

  • 60.

    Henley, S. F. et al. Changing biogeochemistry of the Southern Ocean and its ecosystem implications. Front. Mar. Sci. 7, 581 (2020).

    Article 

    Google Scholar 

  • 61.

    Marshall, G. J. et al. Causes of exceptional atmospheric circulation changes in the Southern Hemisphere. Geophys. Res. Lett. 31, 14 (2004).

    Article 

    Google Scholar 

  • 62.

    Ashton, G. V., Morley, S. A., Barnes, D. K., Clark, M. S. & Peck, L. S. Warming by 1 C drives species and assemblage level responses in Antarctica’s marine shallows. Curr. Biol. 27, 2698-2705e2693 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 63.

    Riesgo, A. et al. Some like it fat: Comparative ultrastructure of the embryo in two demosponges of the genus Mycale (order poecilosclerida) from Antarctica and the Caribbean. PLoS ONE 10, e0118805 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 64.

    Toszogyova, A. & Storch, D. Global diversity patterns are modulated by temporal fluctuations in primary productivity. Glob. Ecol. Biogeogr. 28, 1827–1838 (2019).

    Article 

    Google Scholar 

  • 65.

    Clark, G. F. et al. Light-driven tipping points in polar ecosystems. Glob. Change Biol. 19, 3749–3761 (2013).

    ADS 
    Article 

    Google Scholar 

  • 66.

    Brockington, S., Clarke, A. & Chapman, A. Seasonality of feeding and nutritional status during the austral winter in the Antarctic sea urchin Sterechinus neumayeri. Mar. Biol. 139, 127–138 (2001).

    Article 

    Google Scholar 

  • 67.

    Fratt, D. B. & Dearborn, J. Feeding biology of the Antarctic brittle star Ophionotus victoriae (Echinodermata: Ophiuroidea). Polar Biol. 3, 127–139 (1984).

    Article 

    Google Scholar 

  • 68.

    Sahade, R., Tatián, M. & Esnal, G. B. Reproductive ecology of the ascidian Cnemidocarpa verrucosa at Potter Cove, South Shetland Islands, Antarctica. Mar. Ecol. Progr. Ser. 272, 131–140 (2004).

    ADS 
    Article 

    Google Scholar 

  • 69.

    Dayton, P. K. et al. Recruitment, growth and mortality of an Antarctic hexactinellid sponge, Anoxycalyx joubini. PLoS ONE 8, e56939 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 70.

    Vacchi, M., Cattaneo-Vietti, R., Chiantore, M. & Dalù, M. Predator-prey relationship between the nototheniid fish Trematomus bernacchii and the Antarctic scallop Adamussium colbecki at Terra Nova Bay (Ross Sea). Antarct. Sci. 12, 64–68 (2000).

    ADS 
    Article 

    Google Scholar 

  • 71.

    Sheil, D. & Burslem, D. F. Defining and defending Connell’s intermediate disturbance hypothesis: a response to Fox. Trends Ecol. Evol. 28, 571–572. https://doi.org/10.1016/j.tree.2013.07.006 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    Smarter regulation of global shipping emissions could improve air quality and health outcomes

    Resource–diversity relationships in bacterial communities reflect the network structure of microbial metabolism