in

Intestinal microbiota modulation and improved growth in pigs with post-weaning antibiotic and ZnO supplementation but only subtle microbiota effects with Bacillus altitudinis

  • 1.

    Food and Agriculture Organization & World Health Organization. Health and nutrition properties of probiotics in food including powder milk with live lactic acid bacteria. (FAO food and nutrition paper, 85, 2001).

  • 2.

    Barba-Vidal, E., Martín-Orúe, S. M. & Castillejos, L. Review: Are we using probiotics correctly in post-weaning piglets?. Animal 12, 2489–2498 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 3.

    Bernardeau, M., Lehtinen, M. J., Forssten, S. D. & Nurminen, P. Importance of the gastrointestinal life cycle of Bacillus for probiotic functionality. J. Food Sci. Technol. 54, 2570–2584 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 4.

    Hong, H. A., Duc, L. H. & Cutting, S. M. The use of bacterial spore formers as probiotics. FEMS Microbiol. Rev. 29, 813–835 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • 5.

    Duc, L. H., Hong, H. A. & Cutting, S. M. Germination of the spore in the gastrointestinal tract provides a novel route for heterologous antigen delivery. Vaccine 21, 4215–4224 (2003).

    CAS 

    Google Scholar 

  • 6.

    Leser, T. D., Knarreborg, A. & Worm, J. Germination and outgrowth of Bacillus subtilis and Bacillus licheniformis spores in the gastrointestinal tract of pigs. J. Appl. Microbiol. 104, 1025–1033 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 7.

    Cutting, S. M. Bacillus probiotics. Food Microbiol. 28, 214–220 (2011).

    PubMed 

    Google Scholar 

  • 8.

    Prieto, M. L. et al. Assessment of the bacteriocinogenic potential of marine bacteria reveals lichenicidin production by seaweed-derived Bacillus spp. Mar. Drugs 10, 2280–2299 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 9.

    Prieto, M. L. et al. In vitro assessment of marine Bacillus for use as livestock probiotics. Mar. Drugs 12, 2422–2445 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 10.

    Prieto, M. L. et al. Evaluation of the efficacy and safety of a marine-derived Bacillus strain for use as an in-feed probiotic for newly weaned pigs. PLoS ONE 9, e88599 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 11.

    National Research Council. Nutrient Requirements of Swine (The National Academies Press, 2012).

  • 12.

    Berends, B. R., Urlings, H. A. P., Snijders, J. M. A. & Van Knapen, F. Identification and quantification of risk factors in animal management and transport regarding Salmonella spp. in pigs. Int. J. Food Microbiol. 30, 37–53. https://doi.org/10.1016/0168-1605(96)00990-7 (1996).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 13.

    Miller, M. F., Carr, M. A., Bawcom, D. B., Ramsey, C. B. & Thompson, L. D. Microbiology of pork carcasses from pigs with differing origins and feed withdrawal times†. J. Food Prot. 60, 242–245. https://doi.org/10.4315/0362-028x-60.3.242 (1997).

    Article 
    PubMed 

    Google Scholar 

  • 14.

    Adewole, D. I., Kim, I. H. & Nyachoti, C. M. Gut health of pigs: Challenge models and response criteria with a critical analysis of the effectiveness of selected feed additives—A review. Asian-Austr. J. Anim. Sci. 29, 909–924 (2016).

    CAS 

    Google Scholar 

  • 15.

    Department of Agriculture and Food and Rural Development. European communities (pig carcase (grading)) (amendment) regulations. (S.I. No. 413/2001, 2001).

  • 16.

    Gardiner, G. E. et al. Relative ability of orally administered Lactobacillus murinus to predominate and persist in the porcine gastrointestinal tract. Appl. Environ. Microbiol. 70, 1895–1906 (2004).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 17.

    McCormack, U. M. et al. Exploring a possible link between the intestinal microbiota and feed efficiency in pigs. Appl. Environ. Microbiol. 83, e00380-e417 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 18.

    Buzoianu, S. G. et al. High-throughput sequence-based analysis of the intestinal microbiota of weanling pigs fed genetically modified MON810 maize expressing Bacillus thuringiensis Cry1Ab (Bt maize) for 31 days. Appl. Environ. Microbiol. 78, 4217–4224 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    Andrews, S. FastQC: A quality control tool for high throughput sequence data. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc (2010).

  • 20.

    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 22.

    McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 23.

    R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2020).

  • 24.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2009).

    MATH 

    Google Scholar 

  • 25.

    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 26.

    Foster, Z. S. L., Sharpton, T. J. & Grünwald, N. J. Metacoder: An R package for visualization and manipulation of community taxonomic diversity data. PLOS Comput. Biol. 13, e1005404 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Jadamus, A., Vahjen, W. & Simon, O. Growth behaviour of a spore forming probiotic strain in the gastrointestinal tract of broiler chicken and piglets. Arch. Tierernahr. 54, 1–17 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • 28.

    Duc, L. H., Hong, H. A., Barbosa, T. M., Henriques, A. O. & Cutting, S. M. Characterization of Bacillus probiotics available for human use. Appl. Environ. Microbiol. 70, 2161–2171 (2004).

    ADS 
    CAS 
    PubMed Central 

    Google Scholar 

  • 29.

    Tam, N. K. M. et al. The intestinal life cycle of Bacillus subtilis and close relatives. J. Bacteriol. 188, 2692–2700 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 30.

    Casula, G. & Cutting, S. M. Bacillus Probiotics: Spore germination in the gastrointestinal tract. Appl. Environ. Microbiol. 68, 2344–2352 (2002).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 31.

    Kidder, D. E. & Manners, M. J. Digestion in the pig. (Scientechnica, 1978).

  • 32.

    Crespo-Piazuelo, D. et al. Maternal supplementation with Bacillus altitudinis spores improves porcine offspring growth performance and carcass weight. Br. J. Nutr. https://doi.org/10.1017/S0007114521001203 (2021).

    Article 
    PubMed 

    Google Scholar 

  • 33.

    Zhou, H., Wang, C., Ye, J., Chen, H. & Tao, R. Effects of dietary supplementation of fermented Ginkgo biloba L. residues on growth performance, nutrient digestibility, serum biochemical parameters and immune function in weaned piglets. Anim. Sci. J. 86, 790–799 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 34.

    Kim, S. J., Kwon, C. H., Park, B. C., Lee, C. Y. & Han, J. H. Effects of a lipid-encapsulated zinc oxide dietary supplement, on growth parameters and intestinal morphology in weanling pigs artificially infected with enterotoxigenic Escherichia coli. J. Anim. Sci. Technol. 57, 4 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 35.

    Pérez, V. G. et al. Additivity of effects from dietary copper and zinc on growth performance and fecal microbiota of pigs after weaning. J. Anim. Sci. 89, 414–425 (2011).

    PubMed 

    Google Scholar 

  • 36.

    Ventrella, D. et al. The biomedical piglet: establishing reference intervals for haematology and clinical chemistry parameters of two age groups with and without iron supplementation. BMC Vet. Res. 13, 23 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 37.

    Thorn, C. E. Hematology of the pig. in Schalm’s Veterinary Hematology, 6th edition (eds. Weiss, D. J. & Wardrop, K. J.) 843–851 (2010). https://doi.org/10.1111/j.1939-165X.2011.00324.x

  • 38.

    Morrow-Tesch, J. L., McGlone, J. J. & Salak-Johnson, J. L. Heat and social stress effects on pig immune measures. J. Anim. Sci. 72, 2599–2609 (1994).

    CAS 
    PubMed 

    Google Scholar 

  • 39.

    Schmid, L., Heit, W. & Flury, R. Agranulocytosis associated with semisynthetic penicillins and cephalosporins. Report of 7 cases. Blut 48, 11–18 (1984).

    CAS 
    PubMed 

    Google Scholar 

  • 40.

    Kloubert, V. et al. Influence of zinc supplementation on immune parameters in weaned pigs. J. Trace Elem. Med. Biol. 49, 231–240 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 41.

    The European Agency for the Evaluation of Medicinal Products (EMEA). Commitee for veterinary medicinal products: Apramycin. (1999).

  • 42.

    Frese, S. A., Parker, K., Calvert, C. C. & Mills, D. A. Diet shapes the gut microbiome of pigs during nursing and weaning. Microbiome 3, 28 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 43.

    Slifierz, M. J., Friendship, R. M. & Weese, J. S. Longitudinal study of the early-life fecal and nasal microbiotas of the domestic pig. BMC Microbiol. 15, 184 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 44.

    Ivarsson, E., Roos, S., Liu, H. Y. & Lindberg, J. E. Fermentable non-starch polysaccharides increases the abundance of BacteroidesPrevotellaPorphyromonas in ileal microbial community of growing pigs. Animal 8, 1777–1787 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 45.

    Pajarillo, E. A. B., Chae, J.-P., Balolong, M. P., Bum Kim, H. & Kang, D.-K. Assessment of fecal bacterial diversity among healthy piglets during the weaning transition. J. Gen. Appl. Microbiol. 60, 140–146 (2014).

    CAS 

    Google Scholar 

  • 46.

    Yu, T. et al. Low-molecular-weight chitosan supplementation increases the population of Prevotella in the cecal contents of weanling pigs. Front. Microbiol. 8, 1–9 (2017).

    Google Scholar 

  • 47.

    Shen, J. et al. Coated zinc oxide improves intestinal immunity function and regulates microbiota composition in weaned piglets. Br. J. Nutr. 111, 2123–2134 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 48.

    Rattigan, R., Sweeney, T., Vigors, S., Rajauria, G. & O’Doherty, J. V. Effects of reducing dietary crude protein concentration and supplementation with laminarin or zinc oxide on the faecal scores and colonic microbiota in newly weaned pigs. J. Anim. Physiol. Anim. Nutr. (Berl) 104, 1471–1483 (2020).

    CAS 

    Google Scholar 

  • 49.

    López-Colom, P., Estellé, J., Bonet, J., Coma, J. & Martín-Orúe, S. M. Applicability of an unmedicated feeding program aimed to reduce the use of antimicrobials in nursery piglets: Impact on performance and fecal microbiota. Animals 10, 242 (2020).

    PubMed Central 

    Google Scholar 

  • 50.

    Wei, X. et al. ZnO modulates swine gut microbiota and improves growth performance of nursery pigs when combined with peptide cocktail. Microorganisms 8, 146 (2020).

    CAS 
    PubMed Central 

    Google Scholar 

  • 51.

    Vahjen, W., Pieper, R. & Zentek, J. Increased dietary zinc oxide changes the bacterial core and enterobacterial composition in the ileum of piglets. J. Anim. Sci. 89, 2430–2439 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 52.

    Pieper, R., Vahjen, W., Neumann, K., Van Kessel, A. G. & Zentek, J. Dose-dependent effects of dietary zinc oxide on bacterial communities and metabolic profiles in the ileum of weaned pigs. J. Anim. Physiol. Anim. Nutr. (Berl) 96, 825–833 (2012).

    CAS 

    Google Scholar 

  • 53.

    Yu, T. et al. Dietary high zinc oxide modulates the microbiome of ileum and colon in weaned piglets. Front. Microbiol. 8, 1–12 (2017).

    Google Scholar 

  • 54.

    Xia, T. et al. Dietary ZnO nanoparticles alters intestinal microbiota and inflammation response in weaned piglets. Oncotarget 8, 64878–64891 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 55.

    Poulsen, A.-S.R. et al. Impact of Bacillus spp. spores and gentamicin on the gastrointestinal microbiota of suckling and newly weaned piglets. PLoS ONE 13, e0207382 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 56.

    Hagerty, S. L., Hutchison, K. E., Lowry, C. A. & Bryan, A. D. An empirically derived method for measuring human gut microbiome alpha diversity: Demonstrated utility in predicting health-related outcomes among a human clinical sample. PLoS ONE 15, e0229204 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 57.

    Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).

    ADS 

    Google Scholar 

  • 58.

    Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K. & Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 489, 220–230 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 59.

    Ryden, R. & Moore, B. J. The in vitro activity of apramycin, a new aminocyditol antibiotic. J. Antimicrob. Chemother. 3, 609–613 (1977).

    CAS 
    PubMed 

    Google Scholar 

  • 60.

    Jones, N., Ray, B., Ranjit, K. T. & Manna, A. C. Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol. Lett. 279, 71–76 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 61.

    Gardiner, G. E., Metzler-Zebeli, B. U. & Lawlor, P. G. Impact of intestinal microbiota on growth and feed efficiency in pigs: A review. Microorganisms 8, 1886 (2020).

    CAS 
    PubMed Central 

    Google Scholar 

  • 62.

    Ghanbari, M., Klose, V., Crispie, F. & Cotter, P. D. The dynamics of the antibiotic resistome in the feces of freshly weaned pigs following therapeutic administration of oxytetracycline. Sci. Rep. 9, 4062 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 63.

    Zeineldin, M., Aldridge, B. & Lowe, J. Antimicrobial effects on swine gastrointestinal microbiota and their accompanying antibiotic resistome. Front. Microbiol. 10, 1035 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 64.

    On, S. L. W. Identification methods for campylobacters, helicobacters, and related organisms. Clin. Microbiol. Rev. 9, 405–422 (1996).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 65.

    Bergström, S., Garon, C. F., Barbour, A. G. & MacDougall, J. Extrachromosomal elements of spirochetes. Res. Microbiol. 143, 623–628 (1992).

    PubMed 

    Google Scholar 

  • 66.

    Oh, J. K. et al. Association between the body weight of growing pigs and the functional capacity of their gut microbiota. Anim. Sci. J. 91, e13418 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 67.

    Ruiz, V. L. A. et al. Case–control study of pathogens involved in piglet diarrhea. BMC Res. Notes 9, 22 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 68.

    Yang, Q. et al. Longitudinal development of the gut microbiota in healthy and diarrheic piglets induced by age-related dietary changes. Microbiologyopen 8, e923 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 69.

    Wang, S. et al. Combined supplementation of Lactobacillus fermentum and Pediococcus acidilactici promoted growth performance, alleviated inflammation, and modulated intestinal microbiota in weaned pigs. BMC Vet. Res. 15, 239 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 70.

    Looft, T. et al. Bacteria, phages and pigs: The effects of in-feed antibiotics on the microbiome at different gut locations. ISME J. 8, 1566–1576 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 71.

    Quan, J. et al. A global comparison of the microbiome compositions of three gut locations in commercial pigs with extreme feed conversion ratios. Sci. Rep. 8, 4536 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 72.

    Ramayo-Caldas, Y. et al. Phylogenetic network analysis applied to pig gut microbiota identifies an ecosystem structure linked with growth traits. ISME J. 10, 2973–2977 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 73.

    Che, L. et al. Inter-correlated gut microbiota and SCFAs changes upon antibiotics exposure links with rapid body-mass gain in weaned piglet model. J. Nutr. Biochem. 74, 108246 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 74.

    Machiels, K. et al. A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut 63, 1275–1283 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 75.

    Segain, J. P. et al. Butyrate inhibits inflammatory responses through NFkappaB inhibition: Implications for Crohn’s disease. Gut 47, 397–403 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 76.

    Roediger, W. E. The colonic epithelium in ulcerative colitis: An energy-deficiency disease?. Lancet (London, England) 2, 712–715 (1980).

    CAS 

    Google Scholar 

  • 77.

    Jewell, K. A., Scott, J. J., Adams, S. M. & Suen, G. A phylogenetic analysis of the phylum Fibrobacteres. Syst. Appl. Microbiol. 36, 376–382. https://doi.org/10.1016/j.syapm.2013.04.002 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 78.

    Abdul Rahman, N. et al. A phylogenomic analysis of the bacterial phylum Fibrobacteres. Front. Microbiol. 6, 1469–1469. https://doi.org/10.3389/fmicb.2015.01469 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    Scientists and musicians tackle climate change together

    Climate modeling confirms historical records showing rise in hurricane activity