Food and Agriculture Organization & World Health Organization. Health and nutrition properties of probiotics in food including powder milk with live lactic acid bacteria. (FAO food and nutrition paper, 85, 2001).
Barba-Vidal, E., Martín-Orúe, S. M. & Castillejos, L. Review: Are we using probiotics correctly in post-weaning piglets?. Animal 12, 2489–2498 (2018).
Google Scholar
Bernardeau, M., Lehtinen, M. J., Forssten, S. D. & Nurminen, P. Importance of the gastrointestinal life cycle of Bacillus for probiotic functionality. J. Food Sci. Technol. 54, 2570–2584 (2017).
Google Scholar
Hong, H. A., Duc, L. H. & Cutting, S. M. The use of bacterial spore formers as probiotics. FEMS Microbiol. Rev. 29, 813–835 (2005).
Google Scholar
Duc, L. H., Hong, H. A. & Cutting, S. M. Germination of the spore in the gastrointestinal tract provides a novel route for heterologous antigen delivery. Vaccine 21, 4215–4224 (2003).
Google Scholar
Leser, T. D., Knarreborg, A. & Worm, J. Germination and outgrowth of Bacillus subtilis and Bacillus licheniformis spores in the gastrointestinal tract of pigs. J. Appl. Microbiol. 104, 1025–1033 (2008).
Google Scholar
Cutting, S. M. Bacillus probiotics. Food Microbiol. 28, 214–220 (2011).
Google Scholar
Prieto, M. L. et al. Assessment of the bacteriocinogenic potential of marine bacteria reveals lichenicidin production by seaweed-derived Bacillus spp. Mar. Drugs 10, 2280–2299 (2012).
Google Scholar
Prieto, M. L. et al. In vitro assessment of marine Bacillus for use as livestock probiotics. Mar. Drugs 12, 2422–2445 (2014).
Google Scholar
Prieto, M. L. et al. Evaluation of the efficacy and safety of a marine-derived Bacillus strain for use as an in-feed probiotic for newly weaned pigs. PLoS ONE 9, e88599 (2014).
Google Scholar
National Research Council. Nutrient Requirements of Swine (The National Academies Press, 2012).
Berends, B. R., Urlings, H. A. P., Snijders, J. M. A. & Van Knapen, F. Identification and quantification of risk factors in animal management and transport regarding Salmonella spp. in pigs. Int. J. Food Microbiol. 30, 37–53. https://doi.org/10.1016/0168-1605(96)00990-7 (1996).
Google Scholar
Miller, M. F., Carr, M. A., Bawcom, D. B., Ramsey, C. B. & Thompson, L. D. Microbiology of pork carcasses from pigs with differing origins and feed withdrawal times†. J. Food Prot. 60, 242–245. https://doi.org/10.4315/0362-028x-60.3.242 (1997).
Google Scholar
Adewole, D. I., Kim, I. H. & Nyachoti, C. M. Gut health of pigs: Challenge models and response criteria with a critical analysis of the effectiveness of selected feed additives—A review. Asian-Austr. J. Anim. Sci. 29, 909–924 (2016).
Google Scholar
Department of Agriculture and Food and Rural Development. European communities (pig carcase (grading)) (amendment) regulations. (S.I. No. 413/2001, 2001).
Gardiner, G. E. et al. Relative ability of orally administered Lactobacillus murinus to predominate and persist in the porcine gastrointestinal tract. Appl. Environ. Microbiol. 70, 1895–1906 (2004).
Google Scholar
McCormack, U. M. et al. Exploring a possible link between the intestinal microbiota and feed efficiency in pigs. Appl. Environ. Microbiol. 83, e00380-e417 (2017).
Google Scholar
Buzoianu, S. G. et al. High-throughput sequence-based analysis of the intestinal microbiota of weanling pigs fed genetically modified MON810 maize expressing Bacillus thuringiensis Cry1Ab (Bt maize) for 31 days. Appl. Environ. Microbiol. 78, 4217–4224 (2012).
Google Scholar
Andrews, S. FastQC: A quality control tool for high throughput sequence data. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc (2010).
Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).
Google Scholar
Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).
Google Scholar
McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).
Google Scholar
R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2020).
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2009).
Google Scholar
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
Google Scholar
Foster, Z. S. L., Sharpton, T. J. & Grünwald, N. J. Metacoder: An R package for visualization and manipulation of community taxonomic diversity data. PLOS Comput. Biol. 13, e1005404 (2017).
Google Scholar
Jadamus, A., Vahjen, W. & Simon, O. Growth behaviour of a spore forming probiotic strain in the gastrointestinal tract of broiler chicken and piglets. Arch. Tierernahr. 54, 1–17 (2001).
Google Scholar
Duc, L. H., Hong, H. A., Barbosa, T. M., Henriques, A. O. & Cutting, S. M. Characterization of Bacillus probiotics available for human use. Appl. Environ. Microbiol. 70, 2161–2171 (2004).
Google Scholar
Tam, N. K. M. et al. The intestinal life cycle of Bacillus subtilis and close relatives. J. Bacteriol. 188, 2692–2700 (2006).
Google Scholar
Casula, G. & Cutting, S. M. Bacillus Probiotics: Spore germination in the gastrointestinal tract. Appl. Environ. Microbiol. 68, 2344–2352 (2002).
Google Scholar
Kidder, D. E. & Manners, M. J. Digestion in the pig. (Scientechnica, 1978).
Crespo-Piazuelo, D. et al. Maternal supplementation with Bacillus altitudinis spores improves porcine offspring growth performance and carcass weight. Br. J. Nutr. https://doi.org/10.1017/S0007114521001203 (2021).
Google Scholar
Zhou, H., Wang, C., Ye, J., Chen, H. & Tao, R. Effects of dietary supplementation of fermented Ginkgo biloba L. residues on growth performance, nutrient digestibility, serum biochemical parameters and immune function in weaned piglets. Anim. Sci. J. 86, 790–799 (2015).
Google Scholar
Kim, S. J., Kwon, C. H., Park, B. C., Lee, C. Y. & Han, J. H. Effects of a lipid-encapsulated zinc oxide dietary supplement, on growth parameters and intestinal morphology in weanling pigs artificially infected with enterotoxigenic Escherichia coli. J. Anim. Sci. Technol. 57, 4 (2015).
Google Scholar
Pérez, V. G. et al. Additivity of effects from dietary copper and zinc on growth performance and fecal microbiota of pigs after weaning. J. Anim. Sci. 89, 414–425 (2011).
Google Scholar
Ventrella, D. et al. The biomedical piglet: establishing reference intervals for haematology and clinical chemistry parameters of two age groups with and without iron supplementation. BMC Vet. Res. 13, 23 (2017).
Google Scholar
Thorn, C. E. Hematology of the pig. in Schalm’s Veterinary Hematology, 6th edition (eds. Weiss, D. J. & Wardrop, K. J.) 843–851 (2010). https://doi.org/10.1111/j.1939-165X.2011.00324.x
Morrow-Tesch, J. L., McGlone, J. J. & Salak-Johnson, J. L. Heat and social stress effects on pig immune measures. J. Anim. Sci. 72, 2599–2609 (1994).
Google Scholar
Schmid, L., Heit, W. & Flury, R. Agranulocytosis associated with semisynthetic penicillins and cephalosporins. Report of 7 cases. Blut 48, 11–18 (1984).
Google Scholar
Kloubert, V. et al. Influence of zinc supplementation on immune parameters in weaned pigs. J. Trace Elem. Med. Biol. 49, 231–240 (2018).
Google Scholar
The European Agency for the Evaluation of Medicinal Products (EMEA). Commitee for veterinary medicinal products: Apramycin. (1999).
Frese, S. A., Parker, K., Calvert, C. C. & Mills, D. A. Diet shapes the gut microbiome of pigs during nursing and weaning. Microbiome 3, 28 (2015).
Google Scholar
Slifierz, M. J., Friendship, R. M. & Weese, J. S. Longitudinal study of the early-life fecal and nasal microbiotas of the domestic pig. BMC Microbiol. 15, 184 (2015).
Google Scholar
Ivarsson, E., Roos, S., Liu, H. Y. & Lindberg, J. E. Fermentable non-starch polysaccharides increases the abundance of Bacteroides–Prevotella–Porphyromonas in ileal microbial community of growing pigs. Animal 8, 1777–1787 (2014).
Google Scholar
Pajarillo, E. A. B., Chae, J.-P., Balolong, M. P., Bum Kim, H. & Kang, D.-K. Assessment of fecal bacterial diversity among healthy piglets during the weaning transition. J. Gen. Appl. Microbiol. 60, 140–146 (2014).
Google Scholar
Yu, T. et al. Low-molecular-weight chitosan supplementation increases the population of Prevotella in the cecal contents of weanling pigs. Front. Microbiol. 8, 1–9 (2017).
Shen, J. et al. Coated zinc oxide improves intestinal immunity function and regulates microbiota composition in weaned piglets. Br. J. Nutr. 111, 2123–2134 (2014).
Google Scholar
Rattigan, R., Sweeney, T., Vigors, S., Rajauria, G. & O’Doherty, J. V. Effects of reducing dietary crude protein concentration and supplementation with laminarin or zinc oxide on the faecal scores and colonic microbiota in newly weaned pigs. J. Anim. Physiol. Anim. Nutr. (Berl) 104, 1471–1483 (2020).
Google Scholar
López-Colom, P., Estellé, J., Bonet, J., Coma, J. & Martín-Orúe, S. M. Applicability of an unmedicated feeding program aimed to reduce the use of antimicrobials in nursery piglets: Impact on performance and fecal microbiota. Animals 10, 242 (2020).
Google Scholar
Wei, X. et al. ZnO modulates swine gut microbiota and improves growth performance of nursery pigs when combined with peptide cocktail. Microorganisms 8, 146 (2020).
Google Scholar
Vahjen, W., Pieper, R. & Zentek, J. Increased dietary zinc oxide changes the bacterial core and enterobacterial composition in the ileum of piglets. J. Anim. Sci. 89, 2430–2439 (2011).
Google Scholar
Pieper, R., Vahjen, W., Neumann, K., Van Kessel, A. G. & Zentek, J. Dose-dependent effects of dietary zinc oxide on bacterial communities and metabolic profiles in the ileum of weaned pigs. J. Anim. Physiol. Anim. Nutr. (Berl) 96, 825–833 (2012).
Google Scholar
Yu, T. et al. Dietary high zinc oxide modulates the microbiome of ileum and colon in weaned piglets. Front. Microbiol. 8, 1–12 (2017).
Xia, T. et al. Dietary ZnO nanoparticles alters intestinal microbiota and inflammation response in weaned piglets. Oncotarget 8, 64878–64891 (2017).
Google Scholar
Poulsen, A.-S.R. et al. Impact of Bacillus spp. spores and gentamicin on the gastrointestinal microbiota of suckling and newly weaned piglets. PLoS ONE 13, e0207382 (2018).
Google Scholar
Hagerty, S. L., Hutchison, K. E., Lowry, C. A. & Bryan, A. D. An empirically derived method for measuring human gut microbiome alpha diversity: Demonstrated utility in predicting health-related outcomes among a human clinical sample. PLoS ONE 15, e0229204 (2020).
Google Scholar
Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).
Google Scholar
Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K. & Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 489, 220–230 (2012).
Google Scholar
Ryden, R. & Moore, B. J. The in vitro activity of apramycin, a new aminocyditol antibiotic. J. Antimicrob. Chemother. 3, 609–613 (1977).
Google Scholar
Jones, N., Ray, B., Ranjit, K. T. & Manna, A. C. Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol. Lett. 279, 71–76 (2008).
Google Scholar
Gardiner, G. E., Metzler-Zebeli, B. U. & Lawlor, P. G. Impact of intestinal microbiota on growth and feed efficiency in pigs: A review. Microorganisms 8, 1886 (2020).
Google Scholar
Ghanbari, M., Klose, V., Crispie, F. & Cotter, P. D. The dynamics of the antibiotic resistome in the feces of freshly weaned pigs following therapeutic administration of oxytetracycline. Sci. Rep. 9, 4062 (2019).
Google Scholar
Zeineldin, M., Aldridge, B. & Lowe, J. Antimicrobial effects on swine gastrointestinal microbiota and their accompanying antibiotic resistome. Front. Microbiol. 10, 1035 (2019).
Google Scholar
On, S. L. W. Identification methods for campylobacters, helicobacters, and related organisms. Clin. Microbiol. Rev. 9, 405–422 (1996).
Google Scholar
Bergström, S., Garon, C. F., Barbour, A. G. & MacDougall, J. Extrachromosomal elements of spirochetes. Res. Microbiol. 143, 623–628 (1992).
Google Scholar
Oh, J. K. et al. Association between the body weight of growing pigs and the functional capacity of their gut microbiota. Anim. Sci. J. 91, e13418 (2020).
Google Scholar
Ruiz, V. L. A. et al. Case–control study of pathogens involved in piglet diarrhea. BMC Res. Notes 9, 22 (2016).
Google Scholar
Yang, Q. et al. Longitudinal development of the gut microbiota in healthy and diarrheic piglets induced by age-related dietary changes. Microbiologyopen 8, e923 (2019).
Google Scholar
Wang, S. et al. Combined supplementation of Lactobacillus fermentum and Pediococcus acidilactici promoted growth performance, alleviated inflammation, and modulated intestinal microbiota in weaned pigs. BMC Vet. Res. 15, 239 (2019).
Google Scholar
Looft, T. et al. Bacteria, phages and pigs: The effects of in-feed antibiotics on the microbiome at different gut locations. ISME J. 8, 1566–1576 (2014).
Google Scholar
Quan, J. et al. A global comparison of the microbiome compositions of three gut locations in commercial pigs with extreme feed conversion ratios. Sci. Rep. 8, 4536 (2018).
Google Scholar
Ramayo-Caldas, Y. et al. Phylogenetic network analysis applied to pig gut microbiota identifies an ecosystem structure linked with growth traits. ISME J. 10, 2973–2977 (2016).
Google Scholar
Che, L. et al. Inter-correlated gut microbiota and SCFAs changes upon antibiotics exposure links with rapid body-mass gain in weaned piglet model. J. Nutr. Biochem. 74, 108246 (2019).
Google Scholar
Machiels, K. et al. A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut 63, 1275–1283 (2014).
Google Scholar
Segain, J. P. et al. Butyrate inhibits inflammatory responses through NFkappaB inhibition: Implications for Crohn’s disease. Gut 47, 397–403 (2000).
Google Scholar
Roediger, W. E. The colonic epithelium in ulcerative colitis: An energy-deficiency disease?. Lancet (London, England) 2, 712–715 (1980).
Google Scholar
Jewell, K. A., Scott, J. J., Adams, S. M. & Suen, G. A phylogenetic analysis of the phylum Fibrobacteres. Syst. Appl. Microbiol. 36, 376–382. https://doi.org/10.1016/j.syapm.2013.04.002 (2013).
Google Scholar
Abdul Rahman, N. et al. A phylogenomic analysis of the bacterial phylum Fibrobacteres. Front. Microbiol. 6, 1469–1469. https://doi.org/10.3389/fmicb.2015.01469 (2016).
Google Scholar
Source: Ecology - nature.com