in

Intraspecific variation in thermal tolerance differs between tropical and temperate fishes

  • 1.

    Frölicher, T. L., Fischer, E. M. & Gruber, N. Marine heatwaves under global warming. Nature 560, 360–364 (2018).

    ADS 
    Article 

    Google Scholar 

  • 2.

    Stillman, J. H. Heat waves, the new normal: Summertime temperature extremes will impact animals, ecosystems, and human communities. Physiology 34, 86–100 (2019).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Williams, C. M. et al. Biological impacts of thermal extremes: Mechanisms and costs of functional responses matter. Integr. Comp. Biol. 56, 73–84 (2016).

    Article 

    Google Scholar 

  • 4.

    Comte, L. & Olden, J. D. Climatic vulnerability of the world’s freshwater and marine fishes. Nat. Clim. Chang. 7, 718–722 (2017).

    ADS 
    Article 

    Google Scholar 

  • 5.

    Dahlke, F. T., Wohlrab, S., Butzin, M. & Pörtner, H. O. Thermal bottlenecks in the life cycle define climate vulnerability of fish. Science 369, 65–70 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 6.

    Sunday, J. M., Bates, A. E. & Dulvy, N. K. Global analysis of thermal tolerance and latitude in ectotherms. Proc. R. Soc. B Biol. Sci. 278, 1823–1830 (2011).

    Article 

    Google Scholar 

  • 7.

    Rummer, J. L. et al. Life on the edge: Thermal optima for aerobic scope of equatorial reef fishes are close to current day temperatures. Glob. Chang. Biol. 20, 1055–1066 (2014).

    ADS 
    Article 

    Google Scholar 

  • 8.

    Stuart-Smith, R. D., Edgar, G. J., Barrett, N. S., Kininmonth, S. J. & Bates, A. E. Thermal biases and vulnerability to warming in the world’s marine fauna. Nature 528, 88–92 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 9.

    Pinsky, M. L., Eikeset, A. M., McCauley, D. J., Payne, J. L. & Sunday, J. M. Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature 569, 108–111 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 10.

    Bennett, S., Duarte, C. M., Marbà, N. & Wernberg, T. Integrating within-species variation in thermal physiology into climate change ecology. Philos. Trans. R. Soc. B Biol. Sci. 374, 20180550 (2019).

    Article 

    Google Scholar 

  • 11.

    Comte, L. & Olden, J. D. Evolutionary and environmental determinants of freshwater fish thermal tolerance and plasticity. Glob. Chang. Biol. 23, 728–736 (2017).

    ADS 
    Article 

    Google Scholar 

  • 12.

    Bolnick, D. I. et al. Why intraspecific trait variation matters in community ecology. Trends Ecol. Evol. 26, 183–192 (2011).

    Article 

    Google Scholar 

  • 13.

    Pacifici, M. et al. Assessing species vulnerability to climate change. Nat. Clim. Chang. 5, 215–225 (2015).

    ADS 
    Article 

    Google Scholar 

  • 14.

    Moran, E. V., Hartig, F. & Bell, D. M. Intraspecific trait variation across scales: Implications for understanding global change responses. Glob. Change Biol. 22, 137–150 (2016).

    ADS 
    Article 

    Google Scholar 

  • 15.

    McKenzie, D. J. et al. Intraspecific variation in tolerance of warming in fishes. J. Fish Biol. 98, 1–20 (2020).

    Google Scholar 

  • 16.

    Mimura, M. et al. Understanding and monitoring the consequences of human impacts on intraspecific variation. Evol. Appl. 10, 121–139 (2017).

    Article 

    Google Scholar 

  • 17.

    Doyle, C. M., Leberg, P. L. & Klerks, P. L. Heritability of heat tolerance in a small livebearing fish, Heterandria formosa. Ecotoxicology 20, 535–542 (2011).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Meffe, G. K., Weeks, S. C., Mulvey, M. & Kandl, K. L. Genetic differences in thermal tolerance of eastern mosquitofish (Gambusia holbrooki; Poeciliidae) from ambient and thermal ponds. Can. J. Fish. Aquat. Sci. 52, 2704–2711 (1995).

    Article 

    Google Scholar 

  • 19.

    Gradil, K. J., Garner, S. R., Wilson, C. C., Farrell, A. P. & Neff, B. D. Relationship between cardiac performance and environment across populations of Atlantic salmon (Salmo salar): A common garden experiment implicates local adaptation. Evol. Ecol. 30, 877–886 (2016).

    Article 

    Google Scholar 

  • 20.

    Fangue, N. A., Hofmeister, M. & Schulte, P. M. Intraspecific variation in thermal tolerance and heat shock protein gene expression in common killifish, Fundulus heteroclitus. J. Exp. Biol. 209, 2859–2872 (2006).

    CAS 
    Article 

    Google Scholar 

  • 21.

    Chen, Z., Farrell, A. P., Matala, A. & Narum, S. R. Mechanisms of thermal adaptation and evolutionary potential of conspecific populations to changing environments. Mol. Ecol. 27, 659–674 (2018).

    Article 

    Google Scholar 

  • 22.

    Chen, Z., Farrell, A. P., Matala, A., Hoffman, N. & Narum, S. R. Physiological and genomic signatures of evolutionary thermal adaptation in redband trout from extreme climates. Evol. Appl. 11, 1686–1699 (2018).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Oliver, T. H. et al. Biodiversity and resilience of ecosystem functions. Trends Ecol. Evol. 30, 673–684 (2015).

    Article 

    Google Scholar 

  • 24.

    Mori, A. S., Furukawa, T. & Sasaki, T. Response diversity determines the resilience of ecosystems to environmental change. Biol. Rev. 88, 349–364 (2013).

    Article 

    Google Scholar 

  • 25.

    Rodgers, G. G., Donelson, J. M., McCormick, M. I. & Munday, P. L. In hot water: Sustained ocean warming reduces survival of a low-latitude coral reef fish. Mar. Biol. 165, 1–10 (2018).

    Article 

    Google Scholar 

  • 26.

    Seebacher, F., White, C. R. & Franklin, C. E. Physiological plasticity increases resilience of ectothermic animals to climate change. Nat. Clim. Chang. 5, 61–66 (2015).

    ADS 
    Article 

    Google Scholar 

  • 27.

    Meffe, G. K., Weeks, S. C., Mulvey, M. & Kandl, K. L. Genetic differences in thermal tolerance of eastern mosquitofish (Gambusia holbrooki; Poeciliidae) from ambient and thermal ponds. Can. J. Fish. Aquat. Sci. 52(12), 2704–2711 (1995).

    Article 

    Google Scholar 

  • 28.

    Baer, C. F. & Travis, J. Direct and correlated responses to artificial selection on acute thermal stress tolerance in a livebearing fish. Evolution 54(1), 238–244 (2000).

    CAS 
    Article 

    Google Scholar 

  • 29.

    Klerks, P. L., Athrey, G. N. & Leberg, P. L. Response to selection for increased heat tolerance in a small fish species, with the response decreased by a population bottleneck. Front. Ecol. Evol. 7, 270 (2019).

    Article 

    Google Scholar 

  • 30.

    Morgan, R., Finnøen, M. H., Jensen, H., Pélabon, C. & Jutfelt, F. Low potential for evolutionary rescue from climate change in a tropical fish. Proc. R. Soc. B Biol. Sci. 117(52), 33365–33372 (2020).

    CAS 

    Google Scholar 

  • 31.

    Frölicher, T. L. Extreme climatic events in the ocean. In Predicting Future Oceans: Sustainability of Ocean and Human Systems Amidst Global Environmental Change (eds Cisneros-Montemayor A. M. et al.) 53–60 (2019).

  • 32.

    Wernberg, T. et al. An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat. Clim. Chang. 3(1), 78–82 (2013).

    ADS 
    Article 

    Google Scholar 

  • 33.

    Burrows, M. T. et al. Geographical limits to species-range shifts are suggested by climate velocity. Nature 507(7493), 492–495 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 34.

    Molinos, J. G. et al. Climate velocity and the future global redistribution of marine biodiversity. Nat. Clim. Chang. 6(1), 83–88 (2016).

    ADS 
    Article 

    Google Scholar 

  • 35.

    Cox, D. K. Effects of three heating rates on the critical thermal maximum of bluegill. In Thermal Ecology (eds Gibbons, J. W. & Sharitz, R. R.) (National Technical Information Service, 1974).

    Google Scholar 

  • 36.

    Currie, S. & Schulte, P. M. Thermal stress. In The Physiology of Fishes 4th edn (eds Evans, D. H. et al.) 257–279 (CRC Press, 2014).

    Google Scholar 

  • 37.

    Grafen, A. The phlyogenetic regression. Philos. Trans. R. Soc. Lond. 326, 119–157 (1989).

    ADS 
    CAS 

    Google Scholar 

  • 38.

    Garland, T. Jr. & Ives, A. R. Using the past to predict the present: Confidence intervals for regression equations in phylogenetic comparative methods. Am. Nat. 155, 346–364 (2000).

    Article 

    Google Scholar 

  • 39.

    Orme, D. The caper package: comparative analysis of phylogenetics and evolution in R http://cran.r-project.org/web/packages/caper/index.html (2013).

  • 40.

    Hinchliff, C. E. et al. Synthesis of phylogeny and taxonomy into a comprehensive tree of life. Proc. Natl. Acad. Sci. 112(41), 12764–12769 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 41.

    Michonneau, F., Brown, J. W. & Winter, D. J. rotl: An R package to interact with the Open Tree of Life data. Methods Ecol. Evol. 7, 1476–1481 (2016).

    Article 

    Google Scholar 

  • 42.

    Freckleton, R. P. The seven deadly sins of comparative analysis. J. Evol. Biol. 22, 1367–1375 (2009).

    CAS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Global potential for harvesting drinking water from air using solar energy

    Post-fire insect fauna explored by crown fermental traps in forests of the European Russia