Frölicher, T. L., Fischer, E. M. & Gruber, N. Marine heatwaves under global warming. Nature 560, 360–364 (2018).
Google Scholar
Stillman, J. H. Heat waves, the new normal: Summertime temperature extremes will impact animals, ecosystems, and human communities. Physiology 34, 86–100 (2019).
Google Scholar
Williams, C. M. et al. Biological impacts of thermal extremes: Mechanisms and costs of functional responses matter. Integr. Comp. Biol. 56, 73–84 (2016).
Google Scholar
Comte, L. & Olden, J. D. Climatic vulnerability of the world’s freshwater and marine fishes. Nat. Clim. Chang. 7, 718–722 (2017).
Google Scholar
Dahlke, F. T., Wohlrab, S., Butzin, M. & Pörtner, H. O. Thermal bottlenecks in the life cycle define climate vulnerability of fish. Science 369, 65–70 (2020).
Google Scholar
Sunday, J. M., Bates, A. E. & Dulvy, N. K. Global analysis of thermal tolerance and latitude in ectotherms. Proc. R. Soc. B Biol. Sci. 278, 1823–1830 (2011).
Google Scholar
Rummer, J. L. et al. Life on the edge: Thermal optima for aerobic scope of equatorial reef fishes are close to current day temperatures. Glob. Chang. Biol. 20, 1055–1066 (2014).
Google Scholar
Stuart-Smith, R. D., Edgar, G. J., Barrett, N. S., Kininmonth, S. J. & Bates, A. E. Thermal biases and vulnerability to warming in the world’s marine fauna. Nature 528, 88–92 (2015).
Google Scholar
Pinsky, M. L., Eikeset, A. M., McCauley, D. J., Payne, J. L. & Sunday, J. M. Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature 569, 108–111 (2019).
Google Scholar
Bennett, S., Duarte, C. M., Marbà, N. & Wernberg, T. Integrating within-species variation in thermal physiology into climate change ecology. Philos. Trans. R. Soc. B Biol. Sci. 374, 20180550 (2019).
Google Scholar
Comte, L. & Olden, J. D. Evolutionary and environmental determinants of freshwater fish thermal tolerance and plasticity. Glob. Chang. Biol. 23, 728–736 (2017).
Google Scholar
Bolnick, D. I. et al. Why intraspecific trait variation matters in community ecology. Trends Ecol. Evol. 26, 183–192 (2011).
Google Scholar
Pacifici, M. et al. Assessing species vulnerability to climate change. Nat. Clim. Chang. 5, 215–225 (2015).
Google Scholar
Moran, E. V., Hartig, F. & Bell, D. M. Intraspecific trait variation across scales: Implications for understanding global change responses. Glob. Change Biol. 22, 137–150 (2016).
Google Scholar
McKenzie, D. J. et al. Intraspecific variation in tolerance of warming in fishes. J. Fish Biol. 98, 1–20 (2020).
Mimura, M. et al. Understanding and monitoring the consequences of human impacts on intraspecific variation. Evol. Appl. 10, 121–139 (2017).
Google Scholar
Doyle, C. M., Leberg, P. L. & Klerks, P. L. Heritability of heat tolerance in a small livebearing fish, Heterandria formosa. Ecotoxicology 20, 535–542 (2011).
Google Scholar
Meffe, G. K., Weeks, S. C., Mulvey, M. & Kandl, K. L. Genetic differences in thermal tolerance of eastern mosquitofish (Gambusia holbrooki; Poeciliidae) from ambient and thermal ponds. Can. J. Fish. Aquat. Sci. 52, 2704–2711 (1995).
Google Scholar
Gradil, K. J., Garner, S. R., Wilson, C. C., Farrell, A. P. & Neff, B. D. Relationship between cardiac performance and environment across populations of Atlantic salmon (Salmo salar): A common garden experiment implicates local adaptation. Evol. Ecol. 30, 877–886 (2016).
Google Scholar
Fangue, N. A., Hofmeister, M. & Schulte, P. M. Intraspecific variation in thermal tolerance and heat shock protein gene expression in common killifish, Fundulus heteroclitus. J. Exp. Biol. 209, 2859–2872 (2006).
Google Scholar
Chen, Z., Farrell, A. P., Matala, A. & Narum, S. R. Mechanisms of thermal adaptation and evolutionary potential of conspecific populations to changing environments. Mol. Ecol. 27, 659–674 (2018).
Google Scholar
Chen, Z., Farrell, A. P., Matala, A., Hoffman, N. & Narum, S. R. Physiological and genomic signatures of evolutionary thermal adaptation in redband trout from extreme climates. Evol. Appl. 11, 1686–1699 (2018).
Google Scholar
Oliver, T. H. et al. Biodiversity and resilience of ecosystem functions. Trends Ecol. Evol. 30, 673–684 (2015).
Google Scholar
Mori, A. S., Furukawa, T. & Sasaki, T. Response diversity determines the resilience of ecosystems to environmental change. Biol. Rev. 88, 349–364 (2013).
Google Scholar
Rodgers, G. G., Donelson, J. M., McCormick, M. I. & Munday, P. L. In hot water: Sustained ocean warming reduces survival of a low-latitude coral reef fish. Mar. Biol. 165, 1–10 (2018).
Google Scholar
Seebacher, F., White, C. R. & Franklin, C. E. Physiological plasticity increases resilience of ectothermic animals to climate change. Nat. Clim. Chang. 5, 61–66 (2015).
Google Scholar
Meffe, G. K., Weeks, S. C., Mulvey, M. & Kandl, K. L. Genetic differences in thermal tolerance of eastern mosquitofish (Gambusia holbrooki; Poeciliidae) from ambient and thermal ponds. Can. J. Fish. Aquat. Sci. 52(12), 2704–2711 (1995).
Google Scholar
Baer, C. F. & Travis, J. Direct and correlated responses to artificial selection on acute thermal stress tolerance in a livebearing fish. Evolution 54(1), 238–244 (2000).
Google Scholar
Klerks, P. L., Athrey, G. N. & Leberg, P. L. Response to selection for increased heat tolerance in a small fish species, with the response decreased by a population bottleneck. Front. Ecol. Evol. 7, 270 (2019).
Google Scholar
Morgan, R., Finnøen, M. H., Jensen, H., Pélabon, C. & Jutfelt, F. Low potential for evolutionary rescue from climate change in a tropical fish. Proc. R. Soc. B Biol. Sci. 117(52), 33365–33372 (2020).
Google Scholar
Frölicher, T. L. Extreme climatic events in the ocean. In Predicting Future Oceans: Sustainability of Ocean and Human Systems Amidst Global Environmental Change (eds Cisneros-Montemayor A. M. et al.) 53–60 (2019).
Wernberg, T. et al. An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat. Clim. Chang. 3(1), 78–82 (2013).
Google Scholar
Burrows, M. T. et al. Geographical limits to species-range shifts are suggested by climate velocity. Nature 507(7493), 492–495 (2014).
Google Scholar
Molinos, J. G. et al. Climate velocity and the future global redistribution of marine biodiversity. Nat. Clim. Chang. 6(1), 83–88 (2016).
Google Scholar
Cox, D. K. Effects of three heating rates on the critical thermal maximum of bluegill. In Thermal Ecology (eds Gibbons, J. W. & Sharitz, R. R.) (National Technical Information Service, 1974).
Currie, S. & Schulte, P. M. Thermal stress. In The Physiology of Fishes 4th edn (eds Evans, D. H. et al.) 257–279 (CRC Press, 2014).
Grafen, A. The phlyogenetic regression. Philos. Trans. R. Soc. Lond. 326, 119–157 (1989).
Google Scholar
Garland, T. Jr. & Ives, A. R. Using the past to predict the present: Confidence intervals for regression equations in phylogenetic comparative methods. Am. Nat. 155, 346–364 (2000).
Google Scholar
Orme, D. The caper package: comparative analysis of phylogenetics and evolution in R http://cran.r-project.org/web/packages/caper/index.html (2013).
Hinchliff, C. E. et al. Synthesis of phylogeny and taxonomy into a comprehensive tree of life. Proc. Natl. Acad. Sci. 112(41), 12764–12769 (2015).
Google Scholar
Michonneau, F., Brown, J. W. & Winter, D. J. rotl: An R package to interact with the Open Tree of Life data. Methods Ecol. Evol. 7, 1476–1481 (2016).
Google Scholar
Freckleton, R. P. The seven deadly sins of comparative analysis. J. Evol. Biol. 22, 1367–1375 (2009).
Google Scholar
Source: Ecology - nature.com