Gaston, K. J. Global patterns in biodiversity. Nature 405, 220–227 (2000).
Pagel, M. Inferring the historical patterns of biological evolution. Nature 401, 877–884 (1999).
Kellermann, V. et al. Phylogenetic constraints in key functional traits behind species’ climate niches: patterns of desiccation and cold resistance across 95 Drosophila species. Evolution 66, 3377–3389 (2012).
Baselga, A., Recuero, E., Parra-Olea, G. & García-París, M. Phylogenetic patterns in zopherine beetles are related to ecological niche width and dispersal limitation. Mol. Ecol. 20, 5060–5073 (2011).
Losos, J. B. Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecol. Lett. 11, 995–1003 (2008).
Dormann, C. F., Gruber, B., Winter, M. & Herrman, D. Evolution of climate niches in European mammals?. Biol. Lett. 6, 229–232 (2010).
Hof, C., Rahbek, C. & Araújo, M. B. Phylogenetic signals in the climatic niches of the world’s amphibians. Ecography 33, 242–250 (2010).
Duran, A. & Pie, M. R. Tempo and mode of climate niche evolution in Primates. Evolution 69, 2496–2506 (2015).
Khaliq, I. et al. Global variation in thermal physiology of birds and mammals: evidence for phylogenetic niche conservatism only in the tropics. J. Biogeogr. 42, 2187–2196 (2015).
Pie, M. R. The macroevolution of climatic niches and its role in ant diversification. Ecol. Entomol. 41, 301–307 (2016).
Wiens, J. J. & Donoghue, M. J. Historical biogeography, ecology and species richness. Trends Ecol. Evol. 19, 639–644 (2004).
Wiens, J. J. & Graham, C. H. Niche conservatism: integrating evolution, ecology, and conservation biology. Annu. Rev. Ecol. Evol. Syst. 36, 519–539 (2005).
Webb, C. O., Ackerly, D. D., McPeek, M. A. & Donoghue, M. J. Phylogenies and community ecology. Annu. Rev. Ecol. Evol. Syst. 33, 475–505 (2002).
Broennimann, O. et al. Evidence of climatic niche shift during biological invasion. Ecol. Lett. 10, 701–709 (2007).
Fitzpatrick, M. C., Weltzin, J. F., Sanders, N. J. & Dunn, R. R. The biogeography of prediction error: Why does the introduced range of the fire ant over-predict its native range?. Glob. Ecol. Biogeogr. 16, 24–33 (2007).
Prinzing, A., Durka, W., Klotz, S. & Brandl, R. The niche of higher plants: evidence for phylogenetic conservatism. Proc. Biol. Sci. 268, 1–7 (2001).
Petitpierre, B. et al. Climatic niche shifts are rare among terrestrial plant invaders. Science 335, 1344–1348 (2012).
Kozak, K. H. & Wiens, J. J. Does niche conservatism promote speciation? A case study in North American salamanders. Evolution 60, 2604–2621 (2006).
Rice, N. H., Martinez-Meyer, E. & Peterson, A. T. Ecological niche differentiation in the Aphelocoma jays: a phylogenetic perspective. Biol. J. Linn. Soc. 80, 369–383 (2003).
Graham, C. H., Ron, S. R., Santos, J. C., Schneider, C. J. & Moritz, C. Integrating phylogenetics and environmental niche models to explore speciation mechanisms in dendrobatid frogs. Evolution 58, 1781–1793 (2004).
Knouft, J. H., Losos, J. B., Glor, R. E. & Kolbe, J. J. Phylogenetic analysis of the evolution of the niche in lizards of the Anolis sagrei group. Ecology 87, S29–S38 (2006).
Cooper, N., Freckleton, R. P. & Jetz, W. Phylogenetic conservatism of environmental niches in mammals. Proc. Biol. Sci. 278, 2384–2391 (2011).
Kamilar, J. M. & Muldoon, K. M. The climatic niche diversity of Malagasy primates: a phylogenetic approach. PLoS ONE 5, e11073 (2010).
Peixoto, F. P., Villalobos, F. & Cianciaruso, M. V. Phylogenetic conservatism of climatic niche in bats. Glob. Ecol. Biogeogr. 26, 1055–1065 (2017).
Ricciardi, A., Hoopes, M. F., Marchetti, M. P. & Lockwood, J. L. Progress toward understanding the ecological impacts of nonnative species. Ecol. Monogr. 83, 263–282 (2013).
Bellard, C. & Jeschke, J. M. A spatial mismatch between invader impacts and research publications. Conserv. Biol. 30, 230–232 (2016).
Arnan, X. et al. Dominance-diversity relationships in ant communities differ with invasion. Glob. Change Biol. 24, 4614–4625 (2018).
Gussow, A. B., Auslander, N., Wolf, Y. I. & Koonin, E. V. Prediction of the incubation period for COVID-19 and future virus disease outbreaks. BMC Biol. 18, 1–12 (2020).
Raffini, F. et al. From nucleotides to satellite imagery: approaches to identify and manage the invasive pathogen Xylella fastidiosa and its insect vectors in Europe. Sustainability 12, 4508 (2020).
Chown, S. L. et al. Biological invasions, climate change and genomics. Evol Appl 8, 23–46 (2015).
Rollins, L. A., Richardson, M. F. & Shine, R. A genetic perspective on rapid evolution in cane toads (Rhiniella marina). Mol. Ecol. 24, 2264–2276 (2015).
Estoup, A. et al. Is there a genetic paradox of biological invasion?. Annu. Rev. Ecol. Evol. Syst. 47, 51–72 (2016).
Ricciardi, A. et al. Invasion science: a horizon scan of emerging challenges and opportunities. Trends Ecol. Evol. 32, 464–474 (2017).
Fenderson, L. E., Kovach, A. I. & Llamas, B. Spatiotemporal landscape genetics: Investigating ecology and evolution through space and time. Mol. Ecol. 29, 218–246 (2020).
Violle, C., Nemergut, D. R., Pu, Z. & Jiang, L. Phylogenetic limiting similarity and competitive exclusion. Ecol. Lett. 14, 782–787 (2011).
Novak, S. J. The role of evolution in the invasion process. Proc. Natl. Acad. Sci. USA 104, 3671–3672 (2007).
Buswell, J. M., Moles, A. T. & Hartley, S. Is rapid evolution common in introduced plant species?. J. Ecol. 99, 214–224 (2011).
Saul, W.-C. & Jeschke, J. M. Eco-evolutionary experience in novel species interactions. Ecol. Lett. 18, 236–245 (2015).
Hölldobler, B. & Wilson, E. O. The ants (Harvard University Press, Cambridge, 1990).
Lowe, S., Browne, M., Boudjelas, S. & De Poorter, M. 100 of the world’s worst invasive alien species: a selection from the global invasive species database (Invasive Species Specialist Group, Auckland, 2000).
Holway, D. A., Lach, L., Suarez, A. V., Tsutsui, N. D. & Case, T. J. The causes and consequences of ant invasions. Annu. Rev. Ecol. Evol. Syst. 33, 181–233 (2002).
Lessard, J.-P. et al. Strong influence of regional species pools on continent-wide structuring of local communities. Proc. Biol. Sci. 279, 266–274 (2011).
Lucky, A., Trautwein, M. D., Guénard, B., Weiser, M. D. & Dunn, R. R. Tracing the rise of ants—out of the ground. PLoS ONE 8, e84012 (2013).
Economo, E. P. et al. Global phylogenetic structure of the hyperdiverse ant genus Pheidole reveals the repeated evolution of macroecological patterns. Proc. Biol. Sci. 282, 20141416 (2015).
http://www.formicidae.org/.
http://www.antwiki.org/.
https://www.gbif.org/.
https://www.antweb.org/.
Lebas, C., Galkowski, C., Blatrix, R. & Wegnez, P. Forumis d’Europe occidentale Delachaux et Niestle (Le Premier guide complet d’Europe, Paris, 2016).
Bertelsmeier, C., Ollier, S., Liebhold, A. & Keller, L. Recent human history governs global ant invasion dynamics. Nat. Ecol. Evol. 1, 0184 (2017).
Bernard, F. Faune de l’Europe et du Bassin Méditerranéen. 3. Les Fourmis (Hymenoptera Formicidae) d’Europe Occidentale et Septentrionale. Eur. et Bas. Med. 3. Masson éditeurs, Paris (1968)
Seifert, B. The Ants of Central and North Europe (Lutra Verlags-und Vertriebsgesellschaf, Tauer, 2018).
http://www.iucngisd.org/gisd/100_worst.php.
Wetterer, J. K. Worldwide spread of Emery’s sneaking ant, Cardiocondyla emeryi (Hymenoptera: Formicidae). Myrmecol. News 17, 13–20 (2012).
Heinze, J., Cremer, S., Eckl, N. & Schrempf, A. Stealthy invaders: the biology of Cardiocondyla tramp ants. Insect. Soc. 53, 1–7 (2006).
Fournier, A., Penone, C., Pennino, M. G. & Courchamp, F. Predicting future invaders and future invasions. Proc. Natl. Acad. Sci. USA 116, 7905–7910 (2019).
Moreau, C. S. & Bell, C. D. Testing the museum versus cradle biological diversity hypothesis: phylogeny, diversification, and ancestral biogeographic range evolution of the ants. Evolution 67, 2240–2257 (2013).
Ward, P. S., Brady, S. G., Fisher, B. L. & Schultz, T. R. The evolution of myrmicine ants: phylogeny and biogeography of a hyperdiverse ant clade (Hymenoptera:Formicidae). Syst. Entomol. 40, 61–81 (2015).
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).
https://www.creaf.cat.
R Core Team R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/ (2016).
Münkemüller, T. et al. How to measure and test phylogenetic signal. Methods Ecol. Evol. 3, 743–756 (2012).
Di Cola, V. et al. ecospat: an R package to support spatial analyses and modeling of species niches and distributions. Ecography 40, 774–787 (2017).
Hijmans, R.J. & van Etten, J. raster: Geographic Data Analysis and Modeling. R package version 2.9-5. https://cran.r-project.org/web/packages/raster/index.html (2016).
Hijmans, R.J., Phillips, S., Leathwick, J. & Elith, J. dismo: Species Distribution Modeling. R package version 1.1–4. https://cran.r-project.org/web/packages/dismo/index.html (2011).
Wiens, J. J. The niche, biogeography and species interactions. Philos. Trans. R. Soc. Lond. B Biol. Sci. 366, 2336–2350 (2011).
King, J. R. & Tschinkel, W. R. Experimental evidence that human impacts drive fire ant invasions and ecological change. Proc. Natl. Acad. Sci. USA 105, 20339–20343 (2008).
Vonshak, M. & Gordon, D. M. Intermediate disturbance promotes invasive ant abundance. Biol. Conserv. 186, 359–367 (2015).
McGlynn, T. P. The worldwide transfer of ants: Geographical distribution and ecological invasions. J. Biogeogr. 26, 535–548 (1999).
Kaspari, M. & Vargo, E. Does colony size buffer environmental variation? Bergmann’s rule and social insects. Am. Nat. 145, 610–632 (1995).
McGlynn, T. P. Non-native ants are smaller than related native ants. Am. Nat. 154, 690–699 (1999).
Araújo, M. B. et al. Heat freezes niche evolution. Ecol. Lett. 16, 1206–1219 (2013).
Catford, J. A., Jansson, R. & Nilsson, C. Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Divers. Distrib. 15, 22–40 (2009).
Jenkins, C. N. et al. Global diversity in light of climate change: The case of ants. Divers. Distrib. 17, 652–662 (2011).
Mooney, H. A. & Cleland, E. E. The evolutionary impact of invasive species. Proc. Natl. Acad. Sci. USA 98, 5446–5451 (2001).
Ness, J. H. & Bronstein, J. L. The effects of invasive ants on prospective ant mutualists. Biol. Invasions 6, 445–461 (2004).
Dayan, T. & Simberloff, D. Ecological and community-wide character displacement: The next generation. Ecol. Lett. 8, 875–894 (2005).
Mayfield, M. M. & Levine, J. M. Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecol. Lett. 13, 1085–1093 (2010).
https://www.cbd.int/sp/targets/rationale/target-9.
Source: Ecology - nature.com