in

Introduced ant species occupy empty climatic niches in Europe

  • 1.

    Gaston, K. J. Global patterns in biodiversity. Nature 405, 220–227 (2000).

    CAS  PubMed  Article  Google Scholar 

  • 2.

    Pagel, M. Inferring the historical patterns of biological evolution. Nature 401, 877–884 (1999).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 3.

    Kellermann, V. et al. Phylogenetic constraints in key functional traits behind species’ climate niches: patterns of desiccation and cold resistance across 95 Drosophila species. Evolution 66, 3377–3389 (2012).

    PubMed  Article  Google Scholar 

  • 4.

    Baselga, A., Recuero, E., Parra-Olea, G. & García-París, M. Phylogenetic patterns in zopherine beetles are related to ecological niche width and dispersal limitation. Mol. Ecol. 20, 5060–5073 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  • 5.

    Losos, J. B. Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecol. Lett. 11, 995–1003 (2008).

    PubMed  Article  Google Scholar 

  • 6.

    Dormann, C. F., Gruber, B., Winter, M. & Herrman, D. Evolution of climate niches in European mammals?. Biol. Lett. 6, 229–232 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  • 7.

    Hof, C., Rahbek, C. & Araújo, M. B. Phylogenetic signals in the climatic niches of the world’s amphibians. Ecography 33, 242–250 (2010).

    Google Scholar 

  • 8.

    Duran, A. & Pie, M. R. Tempo and mode of climate niche evolution in Primates. Evolution 69, 2496–2506 (2015).

    PubMed  Article  Google Scholar 

  • 9.

    Khaliq, I. et al. Global variation in thermal physiology of birds and mammals: evidence for phylogenetic niche conservatism only in the tropics. J. Biogeogr. 42, 2187–2196 (2015).

    Article  Google Scholar 

  • 10.

    Pie, M. R. The macroevolution of climatic niches and its role in ant diversification. Ecol. Entomol. 41, 301–307 (2016).

    Article  Google Scholar 

  • 11.

    Wiens, J. J. & Donoghue, M. J. Historical biogeography, ecology and species richness. Trends Ecol. Evol. 19, 639–644 (2004).

    PubMed  Article  Google Scholar 

  • 12.

    Wiens, J. J. & Graham, C. H. Niche conservatism: integrating evolution, ecology, and conservation biology. Annu. Rev. Ecol. Evol. Syst. 36, 519–539 (2005).

    Article  Google Scholar 

  • 13.

    Webb, C. O., Ackerly, D. D., McPeek, M. A. & Donoghue, M. J. Phylogenies and community ecology. Annu. Rev. Ecol. Evol. Syst. 33, 475–505 (2002).

    Article  Google Scholar 

  • 14.

    Broennimann, O. et al. Evidence of climatic niche shift during biological invasion. Ecol. Lett. 10, 701–709 (2007).

    CAS  PubMed  Article  Google Scholar 

  • 15.

    Fitzpatrick, M. C., Weltzin, J. F., Sanders, N. J. & Dunn, R. R. The biogeography of prediction error: Why does the introduced range of the fire ant over-predict its native range?. Glob. Ecol. Biogeogr. 16, 24–33 (2007).

    Article  Google Scholar 

  • 16.

    Prinzing, A., Durka, W., Klotz, S. & Brandl, R. The niche of higher plants: evidence for phylogenetic conservatism. Proc. Biol. Sci. 268, 1–7 (2001).

    Article  Google Scholar 

  • 17.

    Petitpierre, B. et al. Climatic niche shifts are rare among terrestrial plant invaders. Science 335, 1344–1348 (2012).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 18.

    Kozak, K. H. & Wiens, J. J. Does niche conservatism promote speciation? A case study in North American salamanders. Evolution 60, 2604–2621 (2006).

    PubMed  Article  Google Scholar 

  • 19.

    Rice, N. H., Martinez-Meyer, E. & Peterson, A. T. Ecological niche differentiation in the Aphelocoma jays: a phylogenetic perspective. Biol. J. Linn. Soc. 80, 369–383 (2003).

    Article  Google Scholar 

  • 20.

    Graham, C. H., Ron, S. R., Santos, J. C., Schneider, C. J. & Moritz, C. Integrating phylogenetics and environmental niche models to explore speciation mechanisms in dendrobatid frogs. Evolution 58, 1781–1793 (2004).

    PubMed  Article  Google Scholar 

  • 21.

    Knouft, J. H., Losos, J. B., Glor, R. E. & Kolbe, J. J. Phylogenetic analysis of the evolution of the niche in lizards of the Anolis sagrei group. Ecology 87, S29–S38 (2006).

    PubMed  Article  Google Scholar 

  • 22.

    Cooper, N., Freckleton, R. P. & Jetz, W. Phylogenetic conservatism of environmental niches in mammals. Proc. Biol. Sci. 278, 2384–2391 (2011).

    PubMed  PubMed Central  Google Scholar 

  • 23.

    Kamilar, J. M. & Muldoon, K. M. The climatic niche diversity of Malagasy primates: a phylogenetic approach. PLoS ONE 5, e11073 (2010).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 24.

    Peixoto, F. P., Villalobos, F. & Cianciaruso, M. V. Phylogenetic conservatism of climatic niche in bats. Glob. Ecol. Biogeogr. 26, 1055–1065 (2017).

    Article  Google Scholar 

  • 25.

    Ricciardi, A., Hoopes, M. F., Marchetti, M. P. & Lockwood, J. L. Progress toward understanding the ecological impacts of nonnative species. Ecol. Monogr. 83, 263–282 (2013).

    Article  Google Scholar 

  • 26.

    Bellard, C. & Jeschke, J. M. A spatial mismatch between invader impacts and research publications. Conserv. Biol. 30, 230–232 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 27.

    Arnan, X. et al. Dominance-diversity relationships in ant communities differ with invasion. Glob. Change Biol. 24, 4614–4625 (2018).

    ADS  Article  Google Scholar 

  • 28.

    Gussow, A. B., Auslander, N., Wolf, Y. I. & Koonin, E. V. Prediction of the incubation period for COVID-19 and future virus disease outbreaks. BMC Biol. 18, 1–12 (2020).

    Article  CAS  Google Scholar 

  • 29.

    Raffini, F. et al. From nucleotides to satellite imagery: approaches to identify and manage the invasive pathogen Xylella fastidiosa and its insect vectors in Europe. Sustainability 12, 4508 (2020).

    CAS  Article  Google Scholar 

  • 30.

    Chown, S. L. et al. Biological invasions, climate change and genomics. Evol Appl 8, 23–46 (2015).

    PubMed  Article  Google Scholar 

  • 31.

    Rollins, L. A., Richardson, M. F. & Shine, R. A genetic perspective on rapid evolution in cane toads (Rhiniella marina). Mol. Ecol. 24, 2264–2276 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  • 32.

    Estoup, A. et al. Is there a genetic paradox of biological invasion?. Annu. Rev. Ecol. Evol. Syst. 47, 51–72 (2016).

    Article  Google Scholar 

  • 33.

    Ricciardi, A. et al. Invasion science: a horizon scan of emerging challenges and opportunities. Trends Ecol. Evol. 32, 464–474 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  • 34.

    Fenderson, L. E., Kovach, A. I. & Llamas, B. Spatiotemporal landscape genetics: Investigating ecology and evolution through space and time. Mol. Ecol. 29, 218–246 (2020).

    PubMed  Article  PubMed Central  Google Scholar 

  • 35.

    Violle, C., Nemergut, D. R., Pu, Z. & Jiang, L. Phylogenetic limiting similarity and competitive exclusion. Ecol. Lett. 14, 782–787 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  • 36.

    Novak, S. J. The role of evolution in the invasion process. Proc. Natl. Acad. Sci. USA 104, 3671–3672 (2007).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 37.

    Buswell, J. M., Moles, A. T. & Hartley, S. Is rapid evolution common in introduced plant species?. J. Ecol. 99, 214–224 (2011).

    Article  Google Scholar 

  • 38.

    Saul, W.-C. & Jeschke, J. M. Eco-evolutionary experience in novel species interactions. Ecol. Lett. 18, 236–245 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  • 39.

    Hölldobler, B. & Wilson, E. O. The ants (Harvard University Press, Cambridge, 1990).

    Google Scholar 

  • 40.

    Lowe, S., Browne, M., Boudjelas, S. & De Poorter, M. 100 of the world’s worst invasive alien species: a selection from the global invasive species database (Invasive Species Specialist Group, Auckland, 2000).

    Google Scholar 

  • 41.

    Holway, D. A., Lach, L., Suarez, A. V., Tsutsui, N. D. & Case, T. J. The causes and consequences of ant invasions. Annu. Rev. Ecol. Evol. Syst. 33, 181–233 (2002).

    Article  Google Scholar 

  • 42.

    Lessard, J.-P. et al. Strong influence of regional species pools on continent-wide structuring of local communities. Proc. Biol. Sci. 279, 266–274 (2011).

    PubMed  PubMed Central  Google Scholar 

  • 43.

    Lucky, A., Trautwein, M. D., Guénard, B., Weiser, M. D. & Dunn, R. R. Tracing the rise of ants—out of the ground. PLoS ONE 8, e84012 (2013).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 44.

    Economo, E. P. et al. Global phylogenetic structure of the hyperdiverse ant genus Pheidole reveals the repeated evolution of macroecological patterns. Proc. Biol. Sci. 282, 20141416 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 45.

    http://www.formicidae.org/.

  • 46.

    http://www.antwiki.org/.

  • 47.

    https://www.gbif.org/.

  • 48.

    https://www.antweb.org/.

  • 49.

    Lebas, C., Galkowski, C., Blatrix, R. & Wegnez, P. Forumis d’Europe occidentale Delachaux et Niestle (Le Premier guide complet d’Europe, Paris, 2016).

    Google Scholar 

  • 50.

    Bertelsmeier, C., Ollier, S., Liebhold, A. & Keller, L. Recent human history governs global ant invasion dynamics. Nat. Ecol. Evol. 1, 0184 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 51.

    Bernard, F. Faune de l’Europe et du Bassin Méditerranéen. 3. Les Fourmis (Hymenoptera Formicidae) d’Europe Occidentale et Septentrionale. Eur. et Bas. Med. 3. Masson éditeurs, Paris (1968)

  • 52.

    Seifert, B. The Ants of Central and North Europe (Lutra Verlags-und Vertriebsgesellschaf, Tauer, 2018).

    Google Scholar 

  • 53.

    http://www.iucngisd.org/gisd/100_worst.php.

  • 54.

    Wetterer, J. K. Worldwide spread of Emery’s sneaking ant, Cardiocondyla emeryi (Hymenoptera: Formicidae). Myrmecol. News 17, 13–20 (2012).

    Google Scholar 

  • 55.

    Heinze, J., Cremer, S., Eckl, N. & Schrempf, A. Stealthy invaders: the biology of Cardiocondyla tramp ants. Insect. Soc. 53, 1–7 (2006).

    Article  Google Scholar 

  • 56.

    Fournier, A., Penone, C., Pennino, M. G. & Courchamp, F. Predicting future invaders and future invasions. Proc. Natl. Acad. Sci. USA 116, 7905–7910 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 57.

    Moreau, C. S. & Bell, C. D. Testing the museum versus cradle biological diversity hypothesis: phylogeny, diversification, and ancestral biogeographic range evolution of the ants. Evolution 67, 2240–2257 (2013).

    PubMed  Article  Google Scholar 

  • 58.

    Ward, P. S., Brady, S. G., Fisher, B. L. & Schultz, T. R. The evolution of myrmicine ants: phylogeny and biogeography of a hyperdiverse ant clade (Hymenoptera:Formicidae). Syst. Entomol. 40, 61–81 (2015).

    Article  Google Scholar 

  • 59.

    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    Article  Google Scholar 

  • 60.

    https://www.creaf.cat.

  • 61.

    R Core Team R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/ (2016).

  • 62.

    Münkemüller, T. et al. How to measure and test phylogenetic signal. Methods Ecol. Evol. 3, 743–756 (2012).

    Article  Google Scholar 

  • 63.

    Di Cola, V. et al. ecospat: an R package to support spatial analyses and modeling of species niches and distributions. Ecography 40, 774–787 (2017).

    Article  Google Scholar 

  • 64.

    Hijmans, R.J. & van Etten, J. raster: Geographic Data Analysis and Modeling. R package version 2.9-5. https://cran.r-project.org/web/packages/raster/index.html (2016).

  • 65.

    Hijmans, R.J., Phillips, S., Leathwick, J. & Elith, J. dismo: Species Distribution Modeling. R package version 1.1–4. https://cran.r-project.org/web/packages/dismo/index.html (2011).

  • 66.

    Wiens, J. J. The niche, biogeography and species interactions. Philos. Trans. R. Soc. Lond. B Biol. Sci. 366, 2336–2350 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  • 67.

    King, J. R. & Tschinkel, W. R. Experimental evidence that human impacts drive fire ant invasions and ecological change. Proc. Natl. Acad. Sci. USA 105, 20339–20343 (2008).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 68.

    Vonshak, M. & Gordon, D. M. Intermediate disturbance promotes invasive ant abundance. Biol. Conserv. 186, 359–367 (2015).

    Article  Google Scholar 

  • 69.

    McGlynn, T. P. The worldwide transfer of ants: Geographical distribution and ecological invasions. J. Biogeogr. 26, 535–548 (1999).

    Article  Google Scholar 

  • 70.

    Kaspari, M. & Vargo, E. Does colony size buffer environmental variation? Bergmann’s rule and social insects. Am. Nat. 145, 610–632 (1995).

    Article  Google Scholar 

  • 71.

    McGlynn, T. P. Non-native ants are smaller than related native ants. Am. Nat. 154, 690–699 (1999).

    PubMed  Article  PubMed Central  Google Scholar 

  • 72.

    Araújo, M. B. et al. Heat freezes niche evolution. Ecol. Lett. 16, 1206–1219 (2013).

    PubMed  Article  Google Scholar 

  • 73.

    Catford, J. A., Jansson, R. & Nilsson, C. Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Divers. Distrib. 15, 22–40 (2009).

    Article  Google Scholar 

  • 74.

    Jenkins, C. N. et al. Global diversity in light of climate change: The case of ants. Divers. Distrib. 17, 652–662 (2011).

    Article  Google Scholar 

  • 75.

    Mooney, H. A. & Cleland, E. E. The evolutionary impact of invasive species. Proc. Natl. Acad. Sci. USA 98, 5446–5451 (2001).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 76.

    Ness, J. H. & Bronstein, J. L. The effects of invasive ants on prospective ant mutualists. Biol. Invasions 6, 445–461 (2004).

    Article  Google Scholar 

  • 77.

    Dayan, T. & Simberloff, D. Ecological and community-wide character displacement: The next generation. Ecol. Lett. 8, 875–894 (2005).

    Article  Google Scholar 

  • 78.

    Mayfield, M. M. & Levine, J. M. Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecol. Lett. 13, 1085–1093 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  • 79.

    https://www.cbd.int/sp/targets/rationale/target-9.


  • Source: Ecology - nature.com

    Reducing inequality across the globe and on campus

    George Shultz PhD ’49, renowned statesman and former professor, dies at 100