Bulgarelli, D., Schlaeppi, K., Spaepen, S., van Themaat, E. V. L. & Schulze-Lefert, P. Structure and functions of the bacterial microbiota of plants. Annu. Rev. Plant Biol. 64, 807–838 (2013).
Google Scholar
Reinhold-Hurek, B. & Hurek, T. Living inside plants: bacterial endophytes. Curr. Opin. Plant Biol. 14, 435–443 (2011).
Google Scholar
Naveed, M., Mitter, B., Reichenauer, T. G., Wieczorek, K. & Sessitsch, A. Increased drought stress resilience of maize through endophytic colonization by Burkholderia phytofirmans PsJN and Enterobacter sp FD17. Environ. Exp. Bot. 97, 30–39 (2014).
Google Scholar
Santoyo, G., Moreno-Hagelsieb, G., del Carmen Orozco-Mosqueda, M. & Glick, B. R. Plant growth-promoting bacterial endophytes. Microbiol. Res. 183, 92–99 (2016).
Google Scholar
Ali, S., Charles, T. C. & Glick, B. R. Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase. Plant Physiol. Biochem. 80, 160–167 (2014).
Google Scholar
Weyens, N., van der Lelie, D., Taghavi, S. & Vangronsveld, J. Phytoremediation: plant–endophyte partnerships take the challenge. Curr. Opin. Biotechnol. 20, 248–254 (2009).
Google Scholar
Vandenkoornhuyse, P., Quaiser, A., Duhamel, M., Le Van, A. & Dufresne, A. The importance of the microbiome of the plant holobiont. New Phytol. 206, 1196–1206 (2015).
Google Scholar
Card, S. D. et al. Beneficial endophytic microorganisms of Brassica—A review. Biol. Control 90, 102–112 (2015).
Google Scholar
Shahzad, R., Khan, A. L., Bilal, S., Asaf, S. & Lee, I. J. What Is there in seeds? Vertically transmitted endophytic resources for sustainable improvement in plant growth. Front. Plant Sci. 9, 24. https://doi.org/10.3389/fpls.2018.00024 (2018).
Google Scholar
Truyens, S., Weyens, N., Cuypers, A. & Vangronsveld, J. Bacterial seed endophytes: genera, vertical transmission and interaction with plants. Environ. Microbiol. Rep. 7, 40–50 (2015).
Google Scholar
Catford, J. A., Jansson, R. & Nilsson, C. Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Divers. Distrib. 15, 22–40 (2009).
Google Scholar
van Kleunen, M., Dawson, W. & Maurel, N. Characteristics of successful alien plants. Mol. Ecol. 24, 1954–1968 (2015).
Google Scholar
Coats, V. C. & Rumpho, M. E. The rhizosphere microbiota of plant invaders: an overview of recent advances in the microbiomics of invasive plants. Front. Microbiol. 5, 368. https://doi.org/10.3389/fmicb.2014.00368 (2014).
Google Scholar
Richardson, D. M., Allsopp, N., D’antonio, C. M., Milton, S. J. & Rejmánek, M. Plant invasions—the role of mutualisms. Biol. Rev. 75, 65–93 (2000).
Google Scholar
Pringle, A. et al. Mycorrhizal symbioses and plant invasions. Annu. Rev. Ecol. Evol. Syst. 40, 699–715 (2009).
Google Scholar
Sun, Z.-K. & He, W.-M. Evidence for enhanced mutualism hypothesis: Solidago canadensis plants from regular soils perform better. PLoS ONE 5, e15418. https://doi.org/10.1371/journal.pone.0015418 (2010).
Google Scholar
Kowalski, K. P. et al. Advancing the science of microbial symbiosis to support invasive species management: a case study on Phragmites in the Great Lakes. Front. Microbiol. 6, 95. https://doi.org/10.3389/fmicb.2015.00095 (2015).
Google Scholar
Dai, Z. C. et al. Different growth promoting effects of endophytic bacteria on invasive and native clonal plants. Front. Plant Sci. 7, 706. https://doi.org/10.3389/fpls.2016.00706 (2016).
Google Scholar
Rout, M. E. et al. Bacterial endophytes enhance competition by invasive plants. Am. J. Bot. 100, 1726–1737 (2013).
Google Scholar
Soares, M. A. et al. Functional role of bacteria from invasive Phragmites australis in promotion of host growth. Microb. Ecol. 72, 407–417 (2016).
Google Scholar
Kim, Y.-H., Kil, J.-H., Hwang, S.-M. & Lee, C.-W. Spreading and distribution of Lactuca scariola, invasive alien plant, by habitat types in Korea. Weed Turfgrass Sci. 2, 138–151 (2013).
Google Scholar
Moon, S.-I. et al. Isolation and characterization of bio-active materials from prickly lettuce (Lactuca serriola). J. Life Sci. 19, 206–212 (2009).
Google Scholar
Lebeda, A. et al. Acquisition and ecological characterization of Lactuca serriola L germplasm collected in the Czech Republic, Germany, the Netherlands and United Kingdom. Genet. Resour. Crop Evol. 54, 555–562 (2007).
Google Scholar
Mallory-Smith, C. A., Thill, D. C. & Dial, M. J. Identification of sulfonylurea herbicide-resistant prickly lettuce (Lactuca serriola). Weed Technol. 4, 163–168 (1990).
Google Scholar
Glick, B. R. Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012, 963401. https://doi.org/10.6064/2012/963401 (2012).
Google Scholar
Costa, O. Y. A., Raaijmakers, J. M. & Kuramae, E. E. Microbial extracellular polymeric substances: ecological function and impact on soil aggregation. Front. Microbiol. 9, 1636. https://doi.org/10.3389/fmicb.2018.01636 (2018).
Google Scholar
Alami, Y., Achouak, W., Marol, C. & Heulin, T. Rhizosphere soil aggregation and plant growth promotion of sunflowers by an exopolysaccharide-producing Rhizobiums strain isolated from sunflower roots. Appl. Environ. Microbiol. 66, 3393–3398 (2000).
Google Scholar
Sandhya, V., Grover, M., Reddy, G. & Venkateswarlu, B. Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45. Biol. Fertility Soils 46, 17–26 (2009).
Google Scholar
Vardharajula, S. Exopolysaccharide production by drought tolerant Bacillus spp and effect on soil aggregation under drought stress. J. Microbiol. Biotechnol. Food Sci. 9, 51–57 (2020).
Kumar, S., Stecher, G. & Tamura, K. MEGA7: molecular evolutionary genetics analysis version 70 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).
Google Scholar
Kang, S. H. et al. Two bacterial entophytes eliciting both plant growth promotion and plant defense on pepper (Capsicum annuum L). J. Microbiol. Biotechnol. 17, 96–103 (2007).
Google Scholar
Panwar, M., Tewari, R. & Nayyar, H. Native halo-tolerant plant growth promoting rhizobacteria Enterococcus and Pantoea sp. improve seed yield of Mungbean (Vigna radiata L) under soil salinity by reducing sodium uptake and stress injury. Physiol. Mol. Biol. Plants 22, 445–459 (2016).
Google Scholar
Selvakumar, G. et al. Characterization of a cold-tolerant plant growth-promoting bacterium Pantoea dispersa 1A isolated from a sub-alpine soil in the North Western Indian Himalayas. World J. Microbiol. Biotechnol. 24, 955–960 (2008).
Google Scholar
Egamberdieva, D. et al. High incidence of plant growth-stimulating bacteria associated with the rhizosphere of wheat grown on salinated soil in Uzbekistan. Environ. Microbiol. 10, 1–9 (2008).
Google Scholar
Pereira, S., Castro, P. & Research, P. Diversity and characterization of culturable bacterial endophytes from Zea mays and their potential as plant growth-promoting agents in metal-degraded soils. Environ. Sci. Pollut. Res. 21, 14110–14123 (2014).
Google Scholar
Sun, Z. et al. IAA producing Bacillus altitudinis alleviates iron stress in Triticum aestivum L seedling by both bioleaching of iron and up-regulation of genes encoding ferritins. Plant Soil 419, 1–11 (2017).
Google Scholar
Pierik, R., Tholen, D., Poorter, H., Visser, E. J. W. & Voesenek, L. A. C. J. The Janus face of ethylene: growth inhibition and stimulation. Trends Plant Sci. 11, 176–183 (2006).
Google Scholar
Glick, B. R. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol. Res. 169, 30–39 (2014).
Google Scholar
Cardinale, M., Grube, M., Erlacher, A., Quehenberger, J. & Berg, G. Bacterial networks and co-occurrence relationships in the lettuce root microbiota. Environ. Microbiol. 17, 239–252 (2015).
Google Scholar
Yu, Y.-C., Yum, S.-J., Jeon, D.-Y. & Jeong, H.-G. Analysis of the microbiota on lettuce (Lactuca sativa L.) cultivated in South Korea to identify foodborne pathogens. J. Microbiol. Biotechnol. 28, 1318–1331 (2018).
Google Scholar
Brady, C. et al. Isolation of Enterobacter cowanii from Eucalyptus showing symptoms of bacterial blight and dieback in Uruguay. Lett. Appl. Microbiol. 49, 461–465 (2009).
Google Scholar
Chimwamurombe, P. M., Grönemeyer, J. L. & Reinhold-Hurek, B. Isolation and characterization of culturable seed-associated bacterial endophytes from gnotobiotically grown Marama bean seedlings. FEMS Microbiol. Ecol. 92, fiw083. https://doi.org/10.1093/femsec/fiw083 (2016).
Google Scholar
Gao, H. et al. Production exopolysaccharide from Kosakonia cowanii LT-1 through solid-state fermentation and its application as a plant growth promoter. Int. J. Biol. Macromol. 150, 955–964 (2020).
Google Scholar
Wang, L. et al. Development of sugarcane resource for efficient fermentation of exopolysaccharide by using a novel strain of Kosakonia cowanii LT-1. Bioresour. Technol. 280, 247–254 (2019).
Google Scholar
Borlee, B. R. et al. Pseudomonas aeruginosa uses a cyclic-di-GMP-regulated adhesin to reinforce the biofilm extracellular matrix. Mol. Microbiol. 75, 827–842 (2010).
Google Scholar
Huang, X.-F. et al. Mitsuaria sp. and Burkholderia sp. from Arabidopsis rhizosphere enhance drought tolerance in Arabidopsis thaliana and maize (Zea mays L.). Plant Soil 419, 523–539 (2017).
Google Scholar
Marulanda, A., Barea, J.-M. & Azcón, R. Stimulation of plant growth and drought tolerance by native microorganisms (AM fungi and bacteria) from dry environments: mechanisms related to bacterial effectiveness. J. Plant Growth Regul. 28, 115–124 (2009).
Google Scholar
Niu, X., Song, L., Xiao, Y. & Ge, W. Drought-tolerant plant growth-promoting rhizobacteria associated with foxtail millet in a semi-arid agroecosystem and their potential in alleviating drought stress. Front. Microbiol. 8, 2580. https://doi.org/10.3389/fmicb.2017.02580 (2018).
Google Scholar
Sandhya, V., Ali, S. Z., Grover, M., Reddy, G. & Venkateswarlu, B. Effect of plant growth promoting Pseudomonas spp. on compatible solutes, antioxidant status and plant growth of maize under drought stress. Plant Growth Regulat. 62, 21–30 (2010).
Google Scholar
Chen, C. et al. Pantoea alhagi, a novel endophytic bacterium with ability to improve growth and drought tolerance in wheat. Sci. Rep. 7, 41564. https://doi.org/10.1038/srep41564 (2017).
Google Scholar
Mönchgesang, S. et al. Natural variation of root exudates in Arabidopsis thaliana-linking metabolomic and genomic data. Sci. Rep. 6, 1–11 (2016).
Google Scholar
Zhang, N. et al. Effects of different plant root exudates and their organic acid components on chemotaxis, biofilm formation and colonization by beneficial rhizosphere-associated bacterial strains. Plant Soil 374, 689–700 (2014).
Google Scholar
Johnston-Monje, D. & Raizada, M. N. Conservation and diversity of seed associated endophytes in Zea across boundaries of evolution, ethnography and ecology. PLoS ONE 6, e20396. https://doi.org/10.1371/journal.pone.0020396 (2011).
Google Scholar
Coombs, J. T. & Franco, C. M. M. Isolation and identification of Actinobacteria from surface-sterilized wheat roots. Appl. Environ. Microbiol. 69, 5603–5608. https://doi.org/10.1128/aem.69.9.5603-5608.2003 (2003).
Google Scholar
Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120 (1980).
Google Scholar
Saitou, N. & Nei, M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425 (1987).
Google Scholar
Mehta, S. & Nautiyal, C. S. An efficient method for qualitative screening of phosphate-solubilizing bacteria. Curr. Microbiol. 43, 51–56 (2001).
Google Scholar
Milagres, A. M., Machuca, A. & Napoleao, D. Detection of siderophore production from several fungi and bacteria by a modification of chrome azurol S (CAS) agar plate assay. J. Microbiol. Methods 37, 1–6 (1999).
Google Scholar
Dworkin, M. & Foster, J. Experiments with some microorganisms which utilize ethane and hydrogen. J. Bacteriol. 75, 592–603 (1958).
Google Scholar
Singh, J. K., Adams, F. G. & Brown, M. H. Diversity and function of capsular polysaccharide in Acinetobacter baumannii. Front. Microbiol. 9, 3301 (2019).
Google Scholar
Polak-Berecka, M., Waśko, A., Skrzypek, H. & Kreft, A. Production of exopolysaccharides by a probiotic strain of Lactobacillus rhamnosus: biosynthesis and purification methods. Acta Aliment. 42, 220–228 (2013).
Google Scholar
Tschaplinski, T. J. et al. The nature of the progression of drought stress drives differential metabolomic responses in Populus deltoides. Ann. Bot. 124, 617–626 (2019).
Google Scholar
Michel, B. E. & Kaufmann, M. R. The osmotic potential of polyethylene glycol 6000. Plant Physiol. 51, 914–916 (1973).
Google Scholar
Hanna, A., Berg, M., Stout, V. & Razatos, A. Role of capsular colanic acid in adhesion of uropathogenic Escherichia coli. Appl. Environ. Microbiol. 69, 4474–4481 (2003).
Google Scholar
Liu, S.-B. et al. Structure and ecological roles of a novel exopolysaccharide from the Arctic sea ice bacterium Pseudoalteromonas sp. strain SM20310. Appl. Environ. Microbiol. 79, 224–230 (2013).
Google Scholar
Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. & Smith, F. Colorimetric method for determination of sugars and related substances. Analyt. Chem. 28, 350–356 (1956).
Google Scholar
Yahaghi, Z., Shirvani, M., Nourbakhsh, F. & Pueyo, J. J. Uptake and effects of lead and zinc on alfalfa (Medicago sativa L.) seed germination and seedling growth: Role of plant growth promoting bacteria. S. Afr. J. Bot. 124, 573–582 (2019).
Google Scholar
Zhang, Z. & Huang, R. Analysis of malondialdehyde, chlorophyll proline, soluble sugar, and glutathione content in Arabidopsis seedling. Bio-Protoc. 3, e817 (2013).
Türkan, I., Bor, M., Özdemir, F. & Koca, H. Differential responses of lipid peroxidation and antioxidants in the leaves of drought-tolerant P. acutifolius Gray and drought-sensitive P. vulgaris L. subjected to polyethylene glycol mediated water stress. Plant Sci. 168, 223–231 (2005).
Google Scholar
Source: Ecology - nature.com