Steenweg, R. et al. Scaling-up camera traps: monitoring the planet’s biodiversity with networks of remote sensors. Front. Ecol. Environ. 15, 26–34 (2017).
Google Scholar
Rich, L. N. et al. Assessing global patterns in mammalian carnivore occupancy and richness by integrating local camera trap surveys. Global Ecol. Biogeogr. 26, 918–929 (2017).
Google Scholar
Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived? Nature 471, 51–57 (2011).
Google Scholar
Ahumada, J. A. et al. Wildlife insights: a platform to maximize the potential of camera trap and other passive sensor wildlife data for the planet. Environ. Conserv. 47, 1–6 (2020).
Google Scholar
Norouzzadeh, M. S. et al. Automatically identifying, counting, and describing wild animals in camera-trap images with deep learning. Proc. Natl Acad. Sci. 115, E5716–E5725 (2018).
Google Scholar
Miao, Z. et al. Insights and approaches using deep learning to classify wildlife. Sci. Rep. 9, 8137 (2019).
Google Scholar
Liu, Z. et al. Large-scale long-tailed recognition in an open world. In Proc. IEEE Conference on Computer Vision and Pattern Recognition 2537–2546 (IEEE, 2019).
Liu, Z. et al. Open compound domain adaptation. In Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition 12406–12415 (IEEE, 2020).
Hautier, Y. et al. Anthropogenic environmental changes affect ecosystem stability via biodiversity. Science 348, 336–340 (2015).
Google Scholar
Barlow, J. et al. Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature 535, 144–147 (2016).
Google Scholar
Ripple, W. J. et al. Conserving the world’s megafauna and biodiversity: the fierce urgency of now. Bioscience 67, 197–200 (2017).
Google Scholar
Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).
Google Scholar
O’Connell, A. F., Nichols, J. D. & Karanth, K. U. Camera Traps in Animal Ecology: Methods and Analyses (Springer Science & Business Media, 2010).
Burton, A. C. et al. Wildlife camera trapping: a review and recommendations for linking surveys to ecological processes. J. Appl. Ecol. 52, 675–685 (2015).
Google Scholar
Kays, R., McShea, W. J. & Wikelski, M. Born-digital biodiversity data: millions and billions. Divers. Distrib. 26, 644–648 (2020).
Google Scholar
Swanson, A. et al. Snapshot Serengeti, high-frequency annotated camera trap images of 40 mammalian species in an African savanna. Sci. Data 2, 1–14 (2015).
Google Scholar
Ahumada, J. A. et al. Community structure and diversity of tropical forest mammals: data from a global camera trap network. Philos. Trans. R. Soc. B Biol. Sci. 366, 2703–2711 (2011).
Google Scholar
Pardo, L. E. et al. Snapshot Safari: a large-scale collaborative to monitor Africa’s remarkable biodiversity. South Africa J. Sci. https://doi.org/10.17159/sajs.2021/8134 (2021).
Anderson, T. M. et al. The spatial distribution of African savannah herbivores: species associations and habitat occupancy in a landscape context. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150314 (2016).
Google Scholar
Palmer, M., Fieberg, J., Swanson, A., Kosmala, M. & Packer, C. A ‘dynamic’ landscape of fear: prey responses to spatiotemporal variations in predation risk across the lunar cycle. Ecol. Lett. 20, 1364–1373 (2017).
Google Scholar
Tabak, M. A. et al. Machine learning to classify animal species in camera trap images: applications in ecology. Methods Ecol. Evol. 10, 585–590 (2019).
Google Scholar
Whytock, R. C. et al. Robust ecological analysis of camera trap data labelled by a machine learning model. Methods Ecol. Evol 12, 1080–1092 (2021).
Google Scholar
Beery, S., Van Horn, G. & Perona, P. Recognition in terra incognita. In Proc. European Conference on Computer Vision (ECCV) 456–473 (IEEE, 2018).
Tabak, M. A. et al. Improving the accessibility and transferability of machine learning algorithms for identification of animals in camera trap images: MLWIC2. Ecol. Evol. 10, 10374–10383 (2020).
Google Scholar
Shahinfar, S., Meek, P. & Falzon, G. How many images do I need? Understanding how sample size per class affects deep learning model performance metrics for balanced designs in autonomous wildlife monitoring. Ecol. Inform. 57, 101085 (2020).
Google Scholar
Norouzzadeh, M. S. et al. A deep active learning system for species identification and counting in camera trap images. Methods Ecol. Evol. 12, 150–161 (2020).
Google Scholar
Willi, M. et al. Identifying animal species in camera trap images using deep learning and citizen science. Methods Ecol. Evol. 10, 80–91 (2019).
Google Scholar
Schneider, S., Greenberg, S., Taylor, G. W. & Kremer, S. C. Three critical factors affecting automated image species recognition performance for camera traps. Ecol. Evol. 10, 3503–3517 (2020).
Google Scholar
Kays, R. et al. An empirical evaluation of camera trap study design: how many, how long and when? Methods Ecol. Evol. 11, 700–713 (2020).
Google Scholar
Prach, K. & Walker, L. R. Four opportunities for studies of ecological succession. Trends Ecol. Evol. 26, 119–123 (2011).
Google Scholar
Mech, L. D., Isbell, F., Krueger, J. & Hart, J. Gray wolf (Canis lupus) recolonization failure: a Minnesota case study. Can. Field-Nat. 133, 60–65 (2019).
Google Scholar
Taylor, G. et al. Is reintroduction biology an effective applied science? Trends Ecol. Evol. 32, 873–880 (2017).
Google Scholar
Clavero, M. & Garcia-Berthou, E. Invasive species are a leading cause of animal extinctions. Trends Ecol. Evol. 20, 110 (2005).
Google Scholar
Caravaggi, A. et al. An invasive-native mammalian species replacement process captured by camera trap survey random encounter models. Remote Sens. Ecol. Conserv. 2, 45–58 (2016).
Google Scholar
Arjovsky, M., Bottou, L., Gulrajani, I. & Lopez-Paz, D. Invariant risk minimization. Preprint at https://arxiv.org/abs/1907.02893 (2019).
Yosinski, J., Clune, J., Bengio, Y. & Lipson, H. How transferable are features in deep neural networks? In Advances in Neural Information Processing Systems 3320–3328 (IEEE, 2014).
Deng, J. et al. ImageNet: a large-scale hierarchical image database. In Proc. 2009 IEEE Conference on Computer Vision and Pattern Recognition 248–255 (IEEE, 2009).
Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution and protection. Science https://doi.org/10.1126/science.1246752 (2014).
Liu, W., Wang, X., Owens, J. & Li, Y. Energy-based out-of-distribution detection. In Advances in Neural Information Processing Systems (eds Larochelle, H. et al.) 21464–21475 (Curran Associates, 2020).
Lee, D.-H. Pseudo-label: the simple and efficient semi-supervised learning method for deep neural networks. In Workshop on Challenges in Representation Learning, ICML, Vol. 3 (2013).
He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In Proc. IEEE Conference on Computer Vision and Pattern Recognition 770–778 (IEEE, 2016).
Hinton, G., Vinyals, O. & Dean, J. Distilling the knowledge in a neural network. Preprint at https://arxiv.org/abs/1503.02531 (2015).
Gaynor, K. M., Daskin, J. H., Rich, L. N. & Brashares, J. S. Postwar wildlife recovery in an African savanna: evaluating patterns and drivers of species occupancy and richness. Anim. Conserv. 24, 510–522 (2020).
Google Scholar
Paszke, A. et al. in Advances in Neural Information Processing Systems Vol. 32 (eds Wallach, H. et al.) 8024–8035 http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf (Curran Associates, 2019)
Chen, T., Kornblith, S., Norouzi, M. & Hinton, G. A simple framework for contrastive learning of visual representations. Preprint at https://arxiv.org/abs/2002.05709 (2020).
He, K., Fan, H., Wu, Y., Xie, S. & Girshick, R. Momentum contrast for unsupervised visual representation learning. In Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition 9729–9738 (IEEE, 2020).
Xiao, T., Wang, X., Efros, A. A. & Darrell, T. What should not be contrastive in contrastive learning. Preprint at https://arxiv.org/abs/2008.05659 (2020).
Source: Ecology - nature.com