in

Key soil parameters affecting the survival of Panax notoginseng under continuous cropping

  • 1.

    Zhao, Y. Panax notoginseng (Burk.) F.H. Chen (Sanqi, Notoginseng) (eds. Liu, Y., Wang, Z. & Zhang, J.) 185–193 (Springer, 2015).

  • 2.

    Liao, P. et al. Stereoscopic cultivation of Panax notoginseng: A new approach to overcome the continuous cropping obstacle. Ind. Crop Prod. 126, 38–47 (2018).

    CAS  Article  Google Scholar 

  • 3.

    Yang, M. et al. Autotoxic ginsenosides in the rhizosphere contribute to the replant failure of Panax notoginseng. PLoS ONE 10, e0118555 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 4.

    Mazzola, M. & Manici, L. M. Apple replant disease: Role of microbial ecology in cause and control. Annu. Rev. Phytopathol. 50, 45–65 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 5.

    Lovaisa, N. C. et al. Strawberry monocropping: Impacts on fruit yield and soil microorganisms. J. Soil Sci. Plant Nutr. 17, 868–883 (2017).

    CAS  Article  Google Scholar 

  • 6.

    Petermann, J. S., Fergus, A. J. F., Turnbull, L. A. & Schmid, B. Janzen–Connell effects are widespread and strong enough to maintain diversity in grasslands. Ecology 89, 2399–2406 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  • 7.

    Xia, P. G. et al. Optimal fertilizer application for Panax notoginseng and effect of soil water on root rot disease and saponin contents. J. Ginseng Res. 40, 38–46 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  • 8.

    Dong, L., Xu, J., Feng, G., Li, X. & Chen, S. Soil bacterial and fungal community dynamics in relation to Panax notoginseng death rate in a continuous cropping system. Sci. Rep. 6, 31802 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 9.

    Zhang, Y., Zheng, Y., Xia, P., Xun, L. & Liang, Z. Impact of continuous Panax notoginseng plantation on soil microbial and biochemical properties. Sci. Rep. 9, 13205 (2019).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 10.

    Liu, D. H. et al. Study on dynamic change law of N, P and K in Panax notoginseng plant soils with different interval year. China J. Chin. Mater. Med. 39, 572–579 (2014).

    ADS  Google Scholar 

  • 11.

    Vukicevich, E., Lowery, T., Bowen, P., Úrbez-Torres, J. R. & Hart, M. Cover crops to increase soil microbial diversity and mitigate decline in perennial agriculture. A review. Agron. Sustain. Dev. 36, 48 (2016).

    Article  CAS  Google Scholar 

  • 12.

    Manici, L. M., Caputo, F. & Saccà, M. L. Secondary metabolites released into the rhizosphere by Fusarium oxysporum and Fusarium spp. as underestimated component of nonspecific replant disease. Plant Soil 415, 85–98 (2016).

    Article  CAS  Google Scholar 

  • 13.

    Tan, Y. et al. Rhizospheric soil and root endogenous fungal diversity and composition in response to continuous Panax notoginseng cropping practices. Microbiol. Res. 194, 10–19 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  • 14.

    Dumbrell, A. J., Nelson, M., Helgason, T., Dytham, C. & Fitter, A. H. Relative roles of niche and neutral processes in structuring a soil microbial community. ISME J. 4, 337–345 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  • 15.

    Jeanbille, M. et al. Soil parameters drive the structure, diversity and metabolic potentials of the bacterial communities across temperate beech forest soil sequences. Microb. Ecol. 71, 482–493 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 16.

    Wu, F. Y., Cui, X. M., Yang, Y. & Guan, H. L. Effects of soil pH values regulated by different fertilization on the disease incidence and growth of Panax notoginseng. J. Yunnan Univ. 39, 908–914 (2017).

    Google Scholar 

  • 17.

    Wei, W., Yang, M., Liu, Y., Huang, H. & Zhu, S. Fertilizer N application rate impacts plant–soil feedback in a Sanqi production system. Sci. Total Environ. 633, 796–807 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 18.

    Killham, K. & Staddon, W. J. Bioindicators and sensors of soil health and the application of geostatistics (eds. Burns, R. G. & Dick, R. P.) 391–405 (Marcel Dekker, 2002).

  • 19.

    Kotroczó, Z. et al. Soil enzyme activity in response to long-term organic matter manipulation. Soil Biol. Biochem. 70, 237–243 (2014).

    Article  CAS  Google Scholar 

  • 20.

    Sinsabaugh, R. L., Antibus, R. K. & Linkins, A. E. An enzymic approach to the analysis of microbial activity during plant litter decomposition. Agric. Ecosyst. Environ. 34, 43–54 (1991).

    CAS  Article  Google Scholar 

  • 21.

    Li, W. H., Liu, Q. Z. & Chen, P. Effect of long-term continuous cropping of strawberry on soil bacterial community structure and diversity. J. Integr. Agric. 17, 2570–2582 (2018).

    Article  Google Scholar 

  • 22.

    Sun, X. T. et al. Properties of soil physical–chemistry and activities of soil enzymes in context of continuous cropping obstacles for Panax notoginseng. Ecol. Environ. Sci. 24, 409–417 (2015).

    Google Scholar 

  • 23.

    Sun, X. T. et al. The progress and prospect on consecutive monoculture problems of Panax notoginseng. Chin. J. Ecol. 34, 885–893 (2015).

    Google Scholar 

  • 24.

    Tyler, G. & Falkengren-Grerup, U. Soil chemistry and plant performance-ecological consideration. Progr. Bot. 59, 634–658 (1998).

    CAS  Article  Google Scholar 

  • 25.

    Utkhede, R. S. Soil sickness, replant problem or replant disease and its integrated control. Allelopathy J. 18, 23–38 (2006).

    Google Scholar 

  • 26.

    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    Article  Google Scholar 

  • 27.

    Lu, R. K. Analytical Method of Soil and Agricultural Chemistry 260–344 (China Agricultural Science and Technology Press, 2000).

    Google Scholar 

  • 28.

    Guan, S. Soil Enzyme and Its Research Methods 22–36 (Agricultural Publisher, 1986).

    Google Scholar 

  • 29.

    Zhang, Q. et al. Microcalorimetric study of the effects of long-term fertilization on soil microbial activity in a wheat field on the loess plateau. Ecotoxicology 23, 2035–2040 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 30.

    Fellows, I. Deducer: A data analysis GUI for R. J. Stat. Softw. 49, 1–15 (2012).

    Article  Google Scholar 

  • 31.

    Yang, M. et al. Steaming combined with biochar application eliminates negative plant-soil feedback for Sanqi cultivation. Soil Till. Res. 189, 189–198 (2019).

    Article  Google Scholar 

  • 32.

    Tan, Y. et al. Diversity and composition of rhizospheric soil and root endogenous bacteria in Panax notoginseng during continuous cropping practices. J. Basic Microbiol. 57, 337–344 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 33.

    Zhao, Y. M. et al. Role of phenolic acids from the rhizosphere soils of Panax notoginseng as a double-edge sword in the occurrence of root-rot disease. Molecules 23, 819 (2018).

    PubMed Central  Article  CAS  Google Scholar 

  • 34.

    Wu, L. J., Guan, Y. M. & Liu, J. Y. Pollution-Free Cultivation of Panax notoginseng 69–79 (Chemical Industry Press, 2004).

    Google Scholar 

  • 35.

    Du, C. Y., Zhang, N. M., Jiang, R., Wang, T. & Liu, Y. Evaluation of main soil nutrients characteristics for Panax notoginseng planting area of Yunnan. Southwest China J. Agric. Sci. 29, 599–605 (2016).

    Google Scholar 

  • 36.

    Zhou, X. et al. Changes in rhizosphere soil microbial communities in a continuously monocropped cucumber (Cucumis sativus L.) system. Eur. J. Soil Biol. 60, 1–8 (2014).

    CAS  Article  Google Scholar 

  • 37.

    Qin, S. H. et al. Breaking continuous potato cropping with legumes improves soil microbial communities, enzyme activities and tuber yield. PLoS ONE 12, e0175934 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 38.

    Dou, F., Wright, A. L., Mylavarapu, R. S., Jiang, X. J. & Matocha, J. E. Soil enzyme activities and organic matter composition affected by 26 years of continuous cropping. Pedosphere 26, 618–625 (2016).

    CAS  Article  Google Scholar 

  • 39.

    Wang, Y. et al. Effects of biochar on the growth of apple seedlings, soil enzyme activities and fungal communities in replant disease soil. Sci. Hortic. 256, 108641 (2019).

    CAS  Article  Google Scholar 

  • 40.

    Adetunji, A. T., Lewu, F. B., Mulidzi, R. & Ncube, B. The biological activities of β-glucosidase, phosphatase and urease as soil quality indicators: A review. J. Soil Sci. Plant Nutr. 17, 794–807 (2017).

    CAS  Article  Google Scholar 

  • 41.

    Strickland, M. S. & Rousk, J. Considering fungal:bacterial dominance in soils—Methods, controls, and ecosystem implications. Soil Biol. Biochem. 42, 1385–1395 (2010).

    CAS  Article  Google Scholar 

  • 42.

    Malik, A. A. et al. Soil fungal:bacterial ratios are linked to altered carbon cycling. Front. Microbiol. 7, 1247 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 43.

    Liu, X. et al. Soil fumigation and bio-organic fertilizer application promotes potato growth and affects soil bio-chemical properties in a continuous cropping system. Acta Pratacult. Sin. 24, 122–133 (2015).

    Google Scholar 

  • 44.

    Liu, H. J. et al. Characteristics of soil microflora of Panax notoginseng in different continuous cropping years. Allelopathy J. 44, 145–158 (2018).

    ADS  Article  Google Scholar 

  • 45.

    Singh, B. P., Cowi, A. L. & Chan, K. Y. Soil Health and Climate Change 69–85 (Springer, 2011).

    Google Scholar 

  • 46.

    Turner, B. L. Variation in pH optima of hydrolytic enzyme activities in tropical rain forest soils. Appl. Environ. Microbiol. 76, 6485–6493 (2011).

    Article  CAS  Google Scholar 

  • 47.

    Burns, R. G. et al. Soil enzymes in a changing environment: Current knowledge and future directions. Soil. Biol. Biochem. 58, 216–234 (2013).

    CAS  Article  Google Scholar 

  • 48.

    Stark, S., Männistö, M. K. & Eskelinen, A. Nutrient availability and pH jointly constrain microbial extracellular enzyme activities in nutrient-poor tundra soils. Plant Soil 383, 373–385 (2014).

    CAS  Article  Google Scholar 

  • 49.

    Hermans, S. M. et al. Bacteria as emerging indicators of soil condition. Appl. Environ. Microbiol. 83, e02826-e2916 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 50.

    Dong, L. L. et al. Manipulation of microbial community in the rhizosphere alleviates the replanting issues in Panax ginseng. Soil. Biol. Biochem. 125, 64–74 (2018).

    CAS  Article  Google Scholar 

  • 51.

    Li, X. et al. Effects of long-term continuous cropping on soil nematode community and soil condition associated with replant problem in strawberry habitat. Sci. Rep. 6, 30466 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 


  • Source: Ecology - nature.com

    Growing support for valuing ecosystems will help conserve the planet

    Visualizing a climate-resilient MIT