in

Lagged recovery of fish spatial distributions following a cold-water perturbation

  • 1.

    Chen, I. C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 2.

    Lenoir, J. & Svenning, J. C. Climate-related range shifts—a global multidimensional synthesis and new research directions. Ecography (Cop.) 38, 15–28 (2015).

    Article 

    Google Scholar 

  • 3.

    Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Change 3, 919–925 (2013).

    ADS 
    Article 

    Google Scholar 

  • 4.

    Dulvy, N. K. et al. Climate change and deepening of the North Sea fish assemblage: a biotic indicator of warming seas. J. Appl. Ecol. 45, 1029–1039 (2008).

    Article 

    Google Scholar 

  • 5.

    Cheung, W. W. L. et al. Projecting global marine biodiversity impacts under climate change scenarios. Fish Fish. 10, 235–251 (2009).

    Article 

    Google Scholar 

  • 6.

    Chuine, I. Why does phenology drive species distribution? Philos. Philos. Trans. R. Soc. B Biol. Sci. 365, 3149–3160 (2010).

    Article 

    Google Scholar 

  • 7.

    Pörtner, H. Climate change and temperature-dependent biogeography: oxygen limitation of thermal tolerance in animals. Naturwissenschaften 88, 137–146 (2001).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • 8.

    Sunday, J. M., Bates, A. E. & Dulvy, N. K. Thermal tolerance and the global redistribution of animals. Nat. Clim. Change 2, 686–690 (2012).

    ADS 
    Article 

    Google Scholar 

  • 9.

    Gilman, S. E., Urban, M. C., Tewksbury, J., Gilchrist, G. W. & Holt, R. D. A framework for community interactions under climate change. Trends Ecol. Evol. 25, 325–331 (2010).

    PubMed 
    Article 

    Google Scholar 

  • 10.

    Fey, S. B. et al. Opportunities for behavioral rescue under rapid environmental change. Glob. Change Biol. 25, 3110–3120 (2019).

    ADS 
    Article 

    Google Scholar 

  • 11.

    Pinsky, M., Worm, B., Fogarty, M., Sarmiento, J. & Levin, S. Marine taxa track local climate velocities. Science 341, 1239–1242 (2013).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 12.

    Burrows, M. T. et al. The pace of shifting climate in marine and terrestrial ecosystems. Science 334, 652–656 (2011).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 13.

    Harley, C. D. G. & Paine, R. T. Contingencies and compounded rare perturbations dictate sudden distributional shifts during periods of gradual climate change. Proc. Natl. Acad. Sci. U.S.A. 106, 11172–11176 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 14.

    Ummenhofer, C. C. & Meehl, G. A. Extreme weather and climate events with ecological relevance: a review. Philos. Trans. R. Soc. B Biol. Sci. 372, 1–13 (2017).

    Article 

    Google Scholar 

  • 15.

    Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2015).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 16.

    Smith, K. A., Dowling, C. E. & Brown, J. Simmered then boiled: multi-decadal poleward shift in distribution by a temperate fish accelerates during marine heatwave. Front. Mar. Sci. 6, 1–16 (2019).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Kerr, L. A. et al. Lessons learned from practical approaches to reconcile mismatches between biological population structure and stock units of marine fish. ICES J. Mar. Sci. 74, 1708–1722 (2017).

    Article 

    Google Scholar 

  • 18.

    Davies, R. W. D. & Rangeley, R. Banking on cod: exploring economic incentives for recovering Grand Banks and North Sea cod fisheries. Mar. Policy 34, 92–98 (2010).

    Article 

    Google Scholar 

  • 19.

    Dempsey, D. P., Koen-Alonso, M., Gentleman, W. C. & Pepin, P. Compilation and discussion of driver, pressure, and state indicators for the Grand Bank ecosystem, Northwest Atlantic. Ecol. Indic. 75, 331–339 (2017).

    Article 

    Google Scholar 

  • 20.

    Dempsey, D. P., Gentleman, W. C., Pepin, P. & Koen-Alonso, M. Explanatory power of human and environmental pressures on the fish community of the Grand Bank before and after the biomass collapse. Front. Mar. Sci. 5, 1–16 (2018).

    Article 

    Google Scholar 

  • 21.

    Hutchinson, G. Concluding remarks. Cold Spring Harbor Symp. Quant. Biol. 22, 415–427 (1957).

    Article 

    Google Scholar 

  • 22.

    Garrison, L. & Link, J. Fishing effects on spatial distribution and trophic guild structure of the fish community in the Georges Bank region. ICES J. Mar. Sci. 57, 723–730 (2002).

    Article 

    Google Scholar 

  • 23.

    Hsieh, C., Yamauchi, A., Nakazawa, T. & Wang, W. F. Fishing effects on age and spatial structures undermine population stability of fishes. Aquat. Sci. 72, 165–178 (2010).

    Article 

    Google Scholar 

  • 24.

    Borregaard, M. & Rahbek, C. Causality of the relationship between geographic distribution and species abundance. Q. Rev. Biol. 85, 3–25 (2010).

    PubMed 
    Article 

    Google Scholar 

  • 25.

    Matthysen, E. Density-dependent dispersal in birds and mammals. Ecography (Cop.) 28, 403–416 (2005).

    Article 

    Google Scholar 

  • 26.

    Thorson, J. T., Rindorf, A., Gao, J., Hanselman, D. & Winker, H. Density-dependent changes in effective area occupied for bottom-associated marine fishes. Philos. Trans. R. Soc. B Biol. Sci. 283, 20161853 (2016).

    Google Scholar 

  • 27.

    MacCall, A. Dynamic Geography of Marine Fish Populations (Washington Sea Grant Program, 1990).

    Google Scholar 

  • 28.

    Myers, R. A. & Stokes, K. Density-dependent habitat utilization of groundfish and the improvement of research survey. In ICES Committee Meeting D15 (1989).

  • 29.

    Simpson, M. R. & Walsh, S. J. Changes in the spatial structure of Grand Bank yellowtail flounder: testing MacCall’s basin hypothesis. J. Sea Res. 51, 199–210 (2004).

    ADS 
    Article 

    Google Scholar 

  • 30.

    Colbourne, E., Narayanan, S. & Prinsenberg, S. Climatic changes and environmental conditions in the Northwest Atlantic, 1970–1993. ICES J. Mar. Sci. Symp. 198, 311–322 (1994).

    Google Scholar 

  • 31.

    Scheffer, M. & Carpenter, S. R. Catastrophic regime shifts in ecosystems: linking theory to observation. Trends Ecol. Evol. 18, 648–656 (2003).

    Article 

    Google Scholar 

  • 32.

    Pascual, M. & Guichard, F. Criticality and disturbance in spatial ecological systems. Trends Ecol. Evol. 20, 88–95 (2005).

    PubMed 
    Article 

    Google Scholar 

  • 33.

    Walsh, S. J., Simpson, M. & Morgan, M. J. Continental shelf nurseries and recruitment variability in American plaice and yellowtail flounder on the Grand Bank: insights into stock resiliency. J. Sea Res. 51, 271–286 (2004).

    ADS 
    Article 

    Google Scholar 

  • 34.

    Allen, C. R. et al. Quantifying spatial resilience. J. Appl. Ecol. 53, 625–635 (2016).

    Article 

    Google Scholar 

  • 35.

    Revilla, E. & Wiegand, T. Individual movement behavior, matrix heterogeneity, and the dynamics of spatially structured populations. Proc. Natl. Acad. Sci. U.S.A. 105, 19120–19125 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 36.

    Hastings, A. & Botsford, L. W. Persistence of spatial populations depends on returning home. Proc. Natl. Acad. Sci. U.S.A. 103, 6067–6072 (2006).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 37.

    Vuilleumier, S., Wilcox, C., Cairns, B. J. & Possingham, H. P. How patch configuration affects the impact of disturbances on metapopulation persistence. Theor. Popul. Biol. 72, 77–85 (2007).

    PubMed 
    MATH 
    Article 

    Google Scholar 

  • 38.

    Kallimanis, A. S., Kunin, W. E., Halley, J. M. & Sgardelis, S. P. Metapopulation extinction risk under spatially autocorrelated disturbance. Conserv. Biol. 19, 534–546 (2005).

    Article 

    Google Scholar 

  • 39.

    Eliason, E. J. et al. Differences in thermal tolerance among sockeye salmon populations. Science 332, 109–112 (2011).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 40.

    Sorte, C. J. B., Jones, S. J. & Miller, L. P. Geographic variation in temperature tolerance as an indicator of potential population responses to climate change. J. Exp. Mar. Biol. Ecol. 400, 209–217 (2011).

    Article 

    Google Scholar 

  • 41.

    Davis, M. B. & Shaw, R. G. Range shifts and adaptive responses to quaternary climate change. Science 292, 673–679 (2001).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 42.

    Valladares, F. et al. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol. Lett. 17, 1351–1364 (2014).

    PubMed 
    Article 

    Google Scholar 

  • 43.

    Morin, P. Communities: basic patterns and elementary processes. In Community Ecology 1–23 (Blackwell Science, 2011).

  • 44.

    Noble, I. & Slatyer, R. The use of vital attributes to predict successional changes in plant communities subject to recurrent disturbances. Vegetatio 43, 5–21 (1980).

    Article 

    Google Scholar 

  • 45.

    Connell, J. H. & Slatyer, R. O. Mechanisms of succession in natural communities and their role in community stability and organization. Am. Nat. 111, 1119–1144 (1977).

    Article 

    Google Scholar 

  • 46.

    Mullowney, D. R. J., Dawe, E. G., Colbourne, E. B. & Rose, G. A. A review of factors contributing to the decline of Newfoundland and Labrador snow crab (Chionoecetes opilio). Rev. Fish Biol. Fish. 24, 639–657 (2014).

    Article 

    Google Scholar 

  • 47.

    Morin, P. Causes and consequences of diversity. In Community Ecology 283–318 (Blackwell Science, 2011).

  • 48.

    Rietkerk, B. M., Dekker, S. C., De Ruiter, P. C. & Van De Koppel, J. Self-organized patchiness and catastrophic shifts in ecosystems. Science 305, 1926–1929 (2004).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 49.

    Alexander, J. M., Diez, J. M., Hart, S. P. & Levine, J. M. When climate reshuffles competitors: a call for experimental macroecology. Trends Ecol. Evol. 31, 831–841 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 50.

    Guisan, A. et al. Predicting species distributions for conservation decisions. Ecol. Lett. 16, 1424–1435 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 51.

    Wheeland, L. J. & Morgan, M. J. Age-specific shifts in Greenland halibut (Reinhardtius hippoglossoides) distribution in response to changing ocean climate. ICES J. Mar. Sci. 77, 230–240 (2020).

    Google Scholar 

  • 52.

    Runge, C. A., Tulloch, A. I. T., Possingham, H. P., Tulloch, V. J. D. & Fuller, R. A. Incorporating dynamic distributions into spatial prioritization. Divers. Distrib. 22, 332–343 (2016).

    Article 

    Google Scholar 

  • 53.

    Van Teeffelen, A. J. A., Vos, C. C. & Opdam, P. Species in a dynamic world: consequences of habitat network dynamics on conservation planning. Biol. Conserv. 153, 239–253 (2012).

    Article 

    Google Scholar 

  • 54.

    Shepard, S., Greenstreet, S., Piet, G., Rindorf, A. & Dickey-Collas, M. Surveillance indicators and their use in implementation of the marine strategy framework directive. ICES J. Mar. Sci. 72, 2269–2277 (2015).

    Article 

    Google Scholar 

  • 55.

    Link, J. S., Nye, J. A. & Hare, J. A. Guidelines for incorporating fish distribution shifts into a fisheries management context. Fish Fish. 12, 461–469 (2011).

    Article 

    Google Scholar 

  • 56.

    Ockendon, N. et al. Mechanisms underpinning climatic impacts on natural populations: altered species interactions are more important than direct effects. Glob. Change Biol. 20, 2221–2229 (2014).

    ADS 
    Article 

    Google Scholar 

  • 57.

    Araújo, M. B. & Luoto, M. The importance of biotic interactions for modelling species distributions under climate change. Glob. Ecol. Biogeogr. 16, 743–753 (2007).

    Article 

    Google Scholar 

  • 58.

    Healey, B., Brodie, W., Ings, D. & Power, D. Performance and description of Canadian multi-species surveys in NAFO subarea 2+ Divisions 3KLMNO, with emphasis on 2009–2011. Scientific Council Reports (2012).

  • 59.

    Doubleday, W. Manual on groundfish surveys in the Northwest Atlantic. Scientific Council Studies (1981).

  • 60.

    Hiemstra, P. Automatic interpolation package. (2015).

  • 61.

    Oliver, M. A. & Webster, R. Basic Steps in Geostatistics: The Variogram and Kriging (Springer, 2015).

    Google Scholar 

  • 62.

    Thorson, J. T. Guidance for decisions using the vector autoregressive spatio-temporal (VAST) package in stock, ecosystem, habitat and climate assessments. Fish. Res. 210, 143–161 (2019).

    Article 

    Google Scholar 

  • 63.

    Thorson, J. T. VAST model structure and user interface. 1–19 (2019).

  • 64.

    Thorson, J. T., Shelton, A. O., Ward, E. J. & Skaug, H. J. Geostatistical delta-generalized linear mixed models improve precision for estimated abundance indices for West Coast groundfishes. ICES J. Mar. Sci. 72, 1297–1310 (2015).

    Article 

    Google Scholar 

  • 65.

    Thorson, J. T. Three problems with the conventional delta-model for biomass sampling data, and a computationally efficient alternative. Can. J. Fish. Aquat. Sci. 75, 1369–1382 (2017).

    Article 
    CAS 

    Google Scholar 

  • 66.

    Shackell, N. L., Frank, K. T. & Brickman, D. W. Range contraction may not always predict core areas: an example from marine fish. Ecol. Appl. 15, 1440–1449 (2005).

    Article 

    Google Scholar 

  • 67.

    Swain, D. P. & Morin, R. Relationships between geographic distribution and abundance of American plaice (Hippoglossoides platessoides) in the southern Gulf of St. Lawrence. Oceanogr. Lit. Rev. 11, 1155 (1996).

    Google Scholar 

  • 68.

    Kristensen, K., Nielsen, A., Berg, C. W., Skaug, H. & Bell, B. TMB: automatic differentiation and Laplace approximation. J. Stat. Softw. 70, 21 (2016).

    Article 

    Google Scholar 

  • 69.

    R Core Team. R: A language and environment for statistical computing. (2018).

  • 70.

    Scheffer, M., Carpenter, S., Foley, J. A., Folke, C. & Walker, B. Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 71.

    Pebesma, E. & Bivand, R. Classes and methods for spatial data in R. (2005).

  • 72.

    Bivand, R., Keitt, T. & Rowlingson, B. rgdal: Bindings for the ‘Geospatial’ Data Abstraction Library (2019).

  • 73.

    Hijmans, R. J. raster: Geographic Data Analysis and Modeling. (2016).

  • 74.

    Pante, E. marmap: a package for importing, plotting and analyzing bathymetric and topographic data in R. PLoS ONE 8, e73051 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 75.

    Murrell, P. gridBase: Integration of Base and Grid Graphics (2014).

  • 76.

    Bivand, R. S. & Lewin-Koh, N. maptools: Tools for Handling Spatial Objects (2019).

  • 77.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (2009).

  • 78.

    Thorson, J. T. & Barnett, L. A. K. Comparing estimates of abundance trends and distribution shifts using single- and multispecies models of fishes and biogenic habitat. ICES J. Mar. Sci. 74, 1311–1321 (2017).

    Article 

    Google Scholar 

  • 79.

    Nychka, D., Furrer, R. & Paige, J. & Sain. S. Fields: Tools for spatial data. https://doi.org/10.5065/D6W957CT (2017).

    Article 

    Google Scholar 

  • 80.

    Neuwirth, E. RColorBrewer: ColorBrewer Palettes. (2014).


  • Source: Ecology - nature.com

    Invitations to powerful climate action at MIT Better World (Sustainability)

    Climate solutions depend on technology, policy, and businesses working together