in

Landscape resistance constrains hybridization across contact zones in a reproductively and morphologically polymorphic salamander

  • 1.

    Abbott, R. J., Barton, N. H. & Good, J. M. Genomics of hybridization and its evolutionary consequences. Mol. Ecol. 25, 2325–2332 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 2.

    Harrison, R. G. & Larson, E. L. Heterogeneous genome divergence, differential introgression, and the origin and structure of hybrid zones. Mol. Ecol. 25, 2454–2466 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 3.

    Gompert, Z., Mandeville, E. G. & Buerkle, C. A. Analysis of population genomic data from hybrid zones. Annu. Rev. Ecol. Evol. Syst. 48, 207–229 (2017).

    Article 

    Google Scholar 

  • 4.

    Jiggins, C. D. & Mallet, J. Bimodal hybrid zones and speciation. Trends Ecol. Evol. 15, 250–255 (2000).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 5.

    Doebeli, M. & Dieckmann, U. Speciation along environmental gradients. Nature 421, 259–264 (2003).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 6.

    Wang, I. J. & Bradburd, G. S. Isolation by environment. Mol. Ecol. 23, 5649–5662 (2014).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 7.

    Tarroso, P., Pereira, R. J., Martínez-Freiría, F., Godinho, R. & Brito, J. C. Hybridization at an ecotone: Ecological and genetic barriers between three Iberian vipers. Mol. Ecol. 23, 1108–1123 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 8.

    Newman, C. E. & Rissler, L. J. Phylogeographic analyses of the southern leopard frog: The impact of geography and climate on the distribution of genetic lineages vs. subspecies. Mol. Ecol. 20, 5295–5312 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 9.

    Smith, K. L. et al. Spatio-temporal changes in the structure of an Australian frog hybrid zone: A 40-year perspective. Evolution 67, 3442–3454 (2013).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 10.

    Visser, M., Leeuw, M. D., Zuiderwijk, A. & Arntzen, J. W. Stabilization of a salamander moving hybrid zone. Ecol. Evol. 7, 689–696 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 11.

    Carneiro, M. et al. Steep clines within a highly permeable genome across a hybrid zone between two subspecies of the European rabbit. Mol. Ecol. 22, 2511–2525 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 12.

    Gompert, Z., Parchman, T. L. & Buerkle, C. A. Genomics of isolation in hybrids. Philos. Trans. R. Soc. B 367, 439–450 (2012).

    Article 

    Google Scholar 

  • 13.

    Zieliński, P. et al. Differential introgression across newt hybrid zones–evidence from replicated transects. Mol. Ecol. 28, 4811–4824 (2019).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 14.

    Hewitt, G. M. Quaternary phylogeography: The roots of hybrid zones. Genetica 139, 617–638 (2011).

    Article 

    Google Scholar 

  • 15.

    Naciri, Y. & Linder, H. P. The genetics of evolutionary radiations. Biol. Rev. 95, 1055–1072 (2020).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 16.

    Kearns, A. M. et al. Genomic evidence of speciation reversal in ravens. Nat. Commun. 9, 1–13 (2018).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Butlin, R. Speciation by reinforcement. Trends Ecol. Evol. 2, 8–13 (1987).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 18.

    Arntzen, J. W., de Vries, W., Canestrelli, D. & Martínez-Solano, I. Hybrid zone formation and contrasting outcomes of secondary contact over transects in common toads. Mol. Ecol. 26, 5663–5675 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 19.

    Zamudio, K. R., Bell, R. C. & Mason, N. A. Phenotypes in phylogeography: Species’ traits, environmental variation, and vertebrate diversification. Proc. Natl. Acad. Sci. 113, 8041–8048 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 20.

    Devitt, T. J., Baird, S. J. & Moritz, C. Asymmetric reproductive isolation between terminal forms of the salamander ring species Ensatina eschscholtzii revealed by fine-scale genetic analysis of a hybrid zone. BMC Evol. Biol. 11, 245 (2011).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 21.

    Melo, M. C., Salazar, C., Jiggins, C. D. & Linares, M. Assortative mating preferences among hybrids offers a route to hybrid speciation. Evolution 63, 1660–1665 (2009).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 22.

    Cornetti, L. et al. Reproductive isolation between oviparous and viviparous lineages of the Eurasian common lizard Zootoca vivipara in a contact zone. Biol. J. Linn. Soc. 114, 566–573 (2015).

    Article 

    Google Scholar 

  • 23.

    Rafati, N. et al. A genomic map of clinal variation across the European rabbit hybrid zone. Mol. Ecol. 27, 1457–1478 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 24.

    Shipilina, D., Serbyn, M., Ivanitskii, V., Marova, I. & Backström, N. Patterns of genetic, phenotypic, and acoustic variation across a chiffchaff (Phylloscopus collybita abietinus/tristis) hybrid zone. Ecol. Evol. 7(7), 2169–2180 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 25.

    Grabenstein, K. C. & Taylor, S. A. Breaking barriers: Causes, consequences, and experimental utility of human-mediated hybridization. Trends Ecol. Evol. 33(3), 198–212 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 26.

    Coates, D. J., Byrne, M. & Moritz, C. Genetic diversity and conservation units: Dealing with the species-population continuum in the age of genomics. Front. Ecol. Evol. 6, 165 (2018).

    Article 

    Google Scholar 

  • 27.

    Velo-Antón, G., Santos, X., Sanmartín-Villar, I., Cordero-Rivera, A. & Buckley, D. Intraspecific variation in clutch size and maternal investment in pueriparous and larviparous Salamandra salamandra females. Evol. Ecol. 29(1), 185–204 (2015).

    Article 

    Google Scholar 

  • 28.

    Beukema, W., Nicieza, A. G., Lourenço, A. & Velo-Antón, G. Colour polymorphism in Salamandra salamandra (Amphibia: Urodela), revealed by a lack of genetic and environmental differentiation between distinct phenotypes. J. Zool. Syst. Evol. Res. 54(2), 127–136 (2016).

    Article 

    Google Scholar 

  • 29.

    Alarcón-Ríos, L., Nicieza, A. G., Kaliontzopoulou, A., Buckley, D. & Velo-Antón, G. Evolutionary history and not heterochronic modifications associated with viviparity drive head shape differentiation in a reproductive polymorphic species, Salamandra salamandra. Evol. Biol. 47(1), 43–55 (2020).

    Article 

    Google Scholar 

  • 30.

    Burgon, J. D. et al. Phylogenomic inference of species and subspecies diversity in the Palearctic salamander genus Salamandra. Mol. Phylogenet. Evol. 157, 107063 (2021).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 31.

    García-París, M., Alcobendas, M., Buckley, D. & Wake, D. Dispersal of viviparity across contact zones in Iberian populations of Fire salamanders (Salamandra) inferred from discordance of genetic and morphological traits. Evolution 57(1), 129–143 (2003).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 32.

    Velo-Antón, G., García-París, M., Galán, P. & CorderoRivera, A. The evolution of viviparity in holocene islands: ecological adaptation versus phylogenetic descent along the transition from aquatic to terrestrial environments. J. Zool. Syst. Evol. Res. 45(4), 345–352 (2007).

    Article 

    Google Scholar 

  • 33.

    Velo-Antón, G., Zamudio, K. R. & Cordero-Rivera, A. Genetic drift and rapid evolution of viviparity in insular fire salamanders (Salamandra salamandra). Heredity 108(4), 410–418 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 34.

    Uotila, E., Díaz, A. C., Azkue, I. S. & Rubio Pilarte, X. Variation in the reproductive strategies of Salamandra salamandra (Linnaeus, 1758) populations in the province of Gipuzkoa (Basque Country). Munibe Cienc. Nat. Nat. Zientziak 61, 91–101 (2013).

    Google Scholar 

  • 35.

    Galán, P. Viviparismo y distribución de Salamandra salamandra bernardezi en el norte de Galicia. Bol. Asoc. Herpetol. Esp. 18, 44–49 (2007).

    Google Scholar 

  • 36.

    Alcobendas, M., Dopazo, H. & Alberch, P. Geographic variation in allozymes of populations of Salamandra salamandra (Amphibia: Urodela) exhibiting distinct reproductive modes. J. Evol. Biol. 9(1), 83–102 (1996).

    Article 

    Google Scholar 

  • 37.

    Alarcón-Ríos, L., Nicieza, A. G., Lourenço, A. & Velo-Antón, G. The evolution of pueriparity maintains multiple paternity in a polymorphic viviparous salamander. Sci. Rep. 10, 14744 (2020).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 38.

    Lourenço, A., Gonçalves, J., Carvalho, F., Wang, I. J. & Velo-Antón, G. Comparative landscape genetics reveals the evolution of viviparity reduces genetic connectivity in fire salamanders. Mol. Ecol. 28(20), 4573–4591 (2019).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 39.

    Velo-Antón, G., & Buckley, D. Salamandra común—Salamandra salamandra. in Enciclopedia Virtual de los Vertebrados Españoles (L.M. Carrascal, A Salvador, Eds.) (Museo Nacional de Ciencias Naturales, 2015). Retrieved from http://www.vertebradosibericos.org/anfibios/salsal.html

  • 40.

    Cordero, A., Velo-Antón, G. & Galán, P. Ecology of amphibians in small coastal Holocene islands: Local adaptations and the effect of exotic tree plantations. Munibe 25, 94–103 (2007).

    Google Scholar 

  • 41.

    Antunes, B. et al. Combining phylogeography and landscape genetics to infer the evolutionary history of a short-range Mediterranean relict, Salamandra salamandra longirostris. Conserv. Genet. 19(6), 1411–1424 (2018).

    CAS 
    Article 

    Google Scholar 

  • 42.

    Lourenço, A., Álvarez, D., Wang, I. J. & Velo-Antón, G. Trapped within the city: Integrating demography, time since isolation and population-specific traits to assess the genetic effects of urbanization. Mol. Ecol. 26(6), 1498–1514 (2017).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 43.

    Landguth, E. L., Cushman, S. A., Murphy, M. A. & Luikart, G. Relationships between migration rates and landscape resistance assessed using individual-based simulations. Mol. Ecol. Resour. 10(5), 854–862 (2010).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 44.

    Zhang, P., Papenfuss, T. J., Wake, M. H., Qu, L. & Wake, D. B. Phylogeny and biogeography of the family Salamandridae (Amphibia: Caudata) inferred from complete mitochondrial genomes. Mol. Phylogenet. Evol. 49(2), 586–597 (2008).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 45.

    Hendrix, R., Hauswaldt, S., Veith, M. & Steinfartz, S. Strong correlation between cross-amplification success and genetic distance across all members of ‘True Salamanders’ (Amphibia: Salamandridae) revealed by Salamandra salamandra-specific microsatellite loci. Mol. Ecol. Resour. 10(6), 1038–1047 (2010).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 46.

    Steinfartz, S., Kuesters, D. & Tautz, D. Isolation and characterization of polymorphic tetranucleotide microsatellite loci in the Fire salamander Salamandra salamandra (Amphibia: Caudata). Mol. Ecol. Notes 4(4), 626–628 (2004).

    CAS 
    Article 

    Google Scholar 

  • 47.

    Álvarez, D., Lourenço, A., Oro, D. & Velo-Antón, G. Assessment of census (N) and effective population size (N e) reveals consistency of N e single-sample estimators and a high N e/N ratio in an urban and isolated population of fire salamanders. Conserv. Genet. Resour. 7(3), 705–712 (2015).

    Article 

    Google Scholar 

  • 48.

    Antunes, B., Velo-Antón, G., Buckley, D., Pereira, R. & Martínez-Solano, I. Physical and ecological isolation contribute to maintain genetic differentiation between fire salamander subspecies. Heredity. https://doi.org/10.1038/s41437-021-00405-0 (2021).

  • 49.

    Lourenço, A., Sequeira, F., Buckley, D. & Velo-Antón, G. Role of colonization history and species-specific traits on contemporary genetic variation of two salamander species in a Holocene island-mainland system. J. Biogeogr. 45(5), 1054–1066 (2018).

    Article 

    Google Scholar 

  • 50.

    Lourenço, A., Antunes, B., Wang, I. J. & Velo-Antón, G. Fine-scale genetic structure in a salamander with two reproductive modes: Does reproductive mode affect dispersal?. Evol. Ecol. 32(6), 699–732 (2018).

    Article 

    Google Scholar 

  • 51.

    Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 17. Mol. Biol. Evol. 29(8), 1969–1973 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 52.

    Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 9(8), 772 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 53.

    Ehl, S., Vences, M. & Veith, M. Reconstructing evolution at the community level: A case study on Mediterranean amphibians. Mol. Phylogenet. Evol. 134, 211–225 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 54.

    Miller, M. A., Pfeiffer, W., & Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. in 2010 gateway computing environments workshop (GCE pp. 1–8) (2010).

  • 55.

    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155(2), 945–959 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 56.

    Jakobsson, M. & Rosenberg, N. A. CLUMPP: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23(14), 1801–1806 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 57.

    Jombart, T. adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 58.

    Anderson, E. C. & Thompson, E. A. A model-based method for identifying species hybrids using multilocus genetic data. Genetics 160(3), 1217–1229 (2002).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 59.

    Anderson, E. C. Bayesian inference of species hybrids using multilocus dominant genetic markers. Philos. Trans. R. Soc. B 363(1505), 2841–2850 (2008).

    Article 

    Google Scholar 

  • 60.

    Shurtliff, Q. R., Murphy, P. J. & Matocq, M. D. Ecological segregation in a small mammal hybrid zone: Habitat-specific mating opportunities and selection against hybrids restrict gene flow on a fine spatial scale. Evolution 68(3), 729–742 (2014).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 61.

    Shirk, A. J., Landguth, E. L. & Cushman, S. A. A comparison of individual-based genetic distance metrics for landscape genetics. Mol. Ecol. Resour. 17(6), 1308–1317 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 62.

    Wang, J. COANCESTRY: A program for simulating, estimating and analysing relatedness and inbreeding coefficients. Mol. Ecol. Resour. 11(1), 141–145 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 63.

    Queller, D. C. & Goodnight, K. F. Estimating relatedness using genetic markers. Evolution 43, 258–275 (1989).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 64.

    Wang, J. Triadic IBD coefficients and applications to estimating pairwise relatedness. Genet. Res. 89, 135–153 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 65.

    Estrada-Peña, A., Estrada-Sánchez, A. & de la Fuente, J. A global set of Fourier-transformed remotely sensed covariates for the description of abiotic niche in epidemiological studies of tick vector species. Parasit. Vectors 7(1), 302 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 66.

    Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 67.

    Nosil, P., Egan, S. P. & Funk, D. J. Heterogeneous genomic differentiation between walking-stick ecotypes: “Isolation by adaptation” and multiple roles for divergent selection. Evolution 62, 316–336 (2008).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 68.

    Graves, T. A., Beier, P. & Royle, J. A. Current approaches using genetic distances produce poor estimates of landscape resistance to interindividual dispersal. Mol. Ecol. 22(15), 3888–3903 (2013).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 69.

    Peterman, W. E., Connette, G. M., Semlitsch, R. D. & Eggert, L. S. Ecological resistance surfaces predict fine-scale genetic differentiation in a terrestrial woodland salamander. Mol. Ecol. 23(10), 2402–2413 (2014).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 70.

    Tarroso, P., Carvalho, S. B. & Velo-Antón, G. Phylin 2.0: Extending the phylogeographical interpolation method to include uncertainty and user-defined distance metrics. Mol. Ecol. Resour. 19(4), 1081–1094 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 71.

    Peterman, W. E. ResistanceGA: An R package for the optimization of resistance surfaces using genetic algorithms. Methods Ecol. Evol. 9(6), 1638–1647 (2018).

    Article 

    Google Scholar 

  • 72.

    Hutchison, D. W. & Templeton, A. R. Correlation of pairwise genetic and geographic distance measures: Inferring the relative influences of gene flow and drift on the distribution of genetic variability. Evolution 53(6), 1898–1914 (1999).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 73.

    Horreo, J. L. et al. Genetic introgression among differentiated clades is lower among clades exhibiting different parity modes. Heredity 123(2), 264–272 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 74.

    Sota, T. & Tanabe, T. Multiple speciation events in an arthropod with divergent evolution in sexual morphology. Proc. R. Soc. B 277(1682), 689–696 (2010).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 75.

    Merrill, R. M., Van Schooten, B., Scott, J. A. & Jiggins, C. D. Pervasive genetic associations between traits causing reproductive isolation in Heliconius butterflies. Proc. R. Soc. B 278(1705), 511–518 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 76.

    Singhal, S. & Moritz, C. Reproductive isolation between phylogeographic lineages scales with divergence. Proc. R. Soc. B 280(1772), 20132246 (2013).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 77.

    Donaire, D. & Rivera, X. L. salamandra común Salamandra salamandra (Linnaeus, 1758) en el subcantábrico: Origen, dispersión, subspecies y zonas de introgresión. Bull. Soc. Catal. Herpetol. 23, 7–38 (2016).

    Google Scholar 

  • 78.

    Recuero, E. & García-París, M. Evolutionary history of Lissotriton helveticus: multilocus assessment of ancestral vs. recent colonization of the Iberian Peninsula. Mol. Phylogenet. Evol. 60(1), 170–182 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 79.

    Dufresnes, C. et al. Are glacial refugia hotspots of speciation and cyto-nuclear discordances? Answers from the genomic phylogeography of Spanish common frogs. Mol. Ecol. 29, 986–1000 (2020).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 80.

    Toews, D. P. & Brelsford, A. The biogeography of mitochondrial and nuclear discordance in animals. Mol. Ecol. 21(16), 3907–3930 (2012).

    CAS 
    Article 

    Google Scholar 

  • 81.

    Bisconti, R., Porretta, D., Arduino, P., Nascetti, G. & Canestrelli, D. Hybridization and extensive mitochondrial introgression among fire salamanders in peninsular Italy. Sci. Rep. 8(1), 1–10 (2018).

    CAS 
    Article 

    Google Scholar 

  • 82.

    Dinis, M. et al. Allopatric diversification and evolutionary melting pot in a North African Palearctic relict: The biogeographic history of Salamandra algira. Mol. Phylogenet. Evol. 130, 81–91 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 83.

    Buckley, D., Alcobendas, M., García-París, M. & Wake, M. H. Heterochrony, cannibalism, and the evolution of viviparity in Salamandra salamandra. Evol. Dev. 9(1), 105–115 (2007).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 84.

    Helfer, V., Broquet, T. & Fumagalli, L. Sex-specific estimates of dispersal show female philopatry and male dispersal in a promiscuous amphibian, the alpine salamander (Salamandra atra). Mol. Ecol. 21(19), 4706–4720 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 85.

    Vörös, J. et al. Increased genetic structuring of isolated Salamandra salamandra populations (Caudata: Salamandridae) at the margins of the Carpathian Mountains. J. Zool. Syst. Evol. Res. 55(2), 138–149 (2017).

    Article 

    Google Scholar 

  • 86.

    Dudaniec, R. Y., Spear, S. F., Richardson, J. S. & Storfer, A. Current and historical drivers of landscape genetic structure differ in core and peripheral salamander populations. PLoS ONE 7(5), e36769 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 87.

    Richardson, J. L. Divergent landscape effects on population connectivity in two co-occurring amphibian species. Mol. Ecol. 21(18), 4437–4451 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 88.

    Mulder, K. P., Cortes-Rodriguez, N., Campbell Grant, E. H., Brand, A. & Fleischer, R. C. North-facing slopes and elevation shape asymmetric genetic structure in the range-restricted salamander Plethodon shenandoah. Ecol. Evol. 9(9), 5094–5105 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 89.

    Velo-Antón, G., Parra, J. L., Parra-Olea, G. & Zamudio, K. R. Tracking climate change in a dispersal-limited species: Reduced spatial and genetic connectivity in a montane salamander. Mol. Ecol. 22(12), 3261–3278 (2013).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 90.

    Sánchez-Montes, G., Wang, J., Ariño, A. H. & Martínez-Solano, Í. Mountains as barriers to gene flow in amphibians: Quantifying the differential effect of a major mountain ridge on the genetic structure of four sympatric species with different life history traits. J. Biogeogr. 45(2), 318–331 (2018).

    Article 

    Google Scholar 

  • 91.

    Figueiredo-Vázquez, C., Lourenço, A. & Velo-Antón, G. Riverine barriers to gene flow in a salamander with both aquatic and terrestrial reproduction. Evol Ecol https://doi.org/10.1007/s10682-021-10114-z (2021).

  • 92.

    Czypionka, T., Goedbloed, D. J., Steinfartz, S. & Nolte, A. W. Plasticity and evolutionary divergence in gene expression associated with alternative habitat use in larvae of the European Fire Salamander. Mol. Ecol. 27(12), 2698–2713 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 93.

    Arntzen, J. W. & van Belkom, J. ‘Mainland-island’population structure of a terrestrial salamander in a forest-bocage landscape with little evidence for in situ ecological speciation. Sci. Rep. 10(1), 1–15 (2020).

    Article 
    CAS 

    Google Scholar 

  • 94.

    Burgon, J. D. et al. Functional colour genes and signals of selection in colour-polymorphic salamanders. Mol. Ecol. 29(7), 1284–1299 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 95.

    Velo-Antón, G. & Cordero-Rivera, A. Ethological and phenotypic divergence in insular fire salamanders: Diurnal activity mediated by predation?. Acta Ethol. 20(3), 243–253 (2017).

    Article 

    Google Scholar 

  • 96.

    González, T. E. D., & Penas, Á. The high mountain area of Northwestern Spain: The Cantabrian Range, the Galician-Leonese Mountains and the Bierzo Trench. In The vegetation of the Iberian Peninsula (pp. 251–321). (Springer, 2017).


  • Source: Ecology - nature.com

    Q&A: Vivienne Sze on crossing the hardware-software divide for efficient artificial intelligence

    China’s transition to electric vehicles