Stanley, D. & Stout, J. Pollinator sharing between mass-flowering oilseed rape and co-flowering wild plants: implications for wild plant pollination. Plant Ecol. 215, 315–325. https://doi.org/10.1007/s11258-014-0301-7 (2014).
Google Scholar
Kovacs-Hostyanszki, A. et al. Contrasting effects of mass-flowering crops on bee pollination of hedge plants at different spatial and temporal scales. Ecol. Appl. 23, 1938–1946. https://doi.org/10.1890/12-2012.1 (2013).
Google Scholar
Holzschuh, A. et al. Mass-flowering crops dilute pollinator abundance in agricultural landscapes across Europe. Ecol. Lett. 19, 1228–1236. https://doi.org/10.1111/ele.12657 (2016).
Google Scholar
Potts, S. G. et al. Global pollinator declines: trends, impacts and drivers. Trends Ecol. Evol. 25, 345–353. https://doi.org/10.1016/j.tree.2010.01.007 (2010).
Google Scholar
Kremen, C., Williams, N. M. & Thorp, R. W. Crop pollination from native bees at risk from agricultural intensification. Proc Natl Acad Sci U S A 99, 16812–16816. https://doi.org/10.1073/pnas.262413599 (2002).
Google Scholar
Ollerton, J., Erenler, H., Edwards, M. & Crockett, R. Pollinator declines: extinctions of aculeate pollinators in Britain and the role of large-scale agricultural changes. Science 346, 1360–1362. https://doi.org/10.1126/science.1257259 (2014).
Google Scholar
Kovacs-Hostyanszki, A. et al. Ecological intensification to mitigate impacts of conventional intensive land use on pollinators and pollination. Ecol. Lett. 20, 673–689. https://doi.org/10.1111/ele.12762 (2017).
Google Scholar
Tscharntke, T., Klein, A. M., Kruess, A., Steffan-Dewenter, I. & Thies, C. Landscape perspectives on agricultural intensification and biodiversity: ecosystem service management. Ecol. Lett. 8, 857–874. https://doi.org/10.1111/j.1461-0248.2005.00782.x (2005).
Google Scholar
Holland, J. M. et al. Semi-natural habitats support biological control, pollination and soil conservation in Europe: a review. Agron. Sustain. Dev. https://doi.org/10.1007/s13593-017-0434-x (2017).
Google Scholar
Garibaldi, L. A. et al. Stability of pollination services decreases with isolation from natural areas despite honey bee visits. Ecol. Lett. 14, 1062–1072. https://doi.org/10.1111/j.1461-0248.2011.01669.x (2011).
Google Scholar
Bartomeus, I. et al. Contribution of insect pollinators to crop yield and quality varies with agricultural intensification. PeerJ 2, e328. https://doi.org/10.7717/peerj.328 (2014).
Google Scholar
Holzschuh, A., Dudenhoffer, J. H. & Tscharntke, T. Landscapes with wild bee habitats enhance pollination, fruit set and yield of sweet cherry. Biol. Conserv. 153, 101–107. https://doi.org/10.1016/j.biocon.2012.04.032 (2012).
Google Scholar
Marini, L. et al. Crop management modifies the benefits of insect pollination in oilseed rape. Agric. Ecosyst. Environ. 207, 61–66. https://doi.org/10.1016/j.agee.2015.03.027 (2015).
Google Scholar
Persson, A. S. & Smith, H. G. Seasonal persistence of bumblebee populations is affected by landscape context. Agric. Ecosyst. Environ. 165, 201–209. https://doi.org/10.1016/j.agee.2012.12.008 (2013).
Google Scholar
Rundlof, M., Persson, A. S., Smith, H. G. & Bommarco, R. Late-season mass-flowering red clover increases bumble bee queen and male densities. Biol. Conserv. 172, 138–145. https://doi.org/10.1016/j.biocon.2014.02.027 (2014).
Google Scholar
Westphal, C., Steffan-Dewenter, I. & Tscharntke, T. Mass flowering oilseed rape improves early colony growth but not sexual reproduction of bumblebees. J. Appl. Ecol. 46, 187–193. https://doi.org/10.1111/j.1365-2664.2008.01580.x (2009).
Google Scholar
Williams, N. M., Regetz, J. & Kremen, C. Landscape-scale resources promote colony growth but not reproductive performance of bumble bees. Ecology 93, 1049–1058. https://doi.org/10.1890/11-1006.1 (2012).
Google Scholar
Steffan-Dewenter, I., Munzenberg, U., Burger, C., Thies, C. & Tscharntke, T. Scale-dependent effects of landscape context on three pollinator guilds. Ecology 83, 1421–1432. https://doi.org/10.2307/3071954 (2002).
Google Scholar
Steffan-Dewenter, I., Münzenberg, U. & Tscharntke, T. Pollination, seed set and seed predation on a landscape scale. Proc. Natl. Acad. Sci. USA 268, 1685–1690. https://doi.org/10.1098/rspb.2001.1737 (2001).
Google Scholar
Bartual, A. et al. The potential of different semi-natural habitats to sustain pollinators and natural enemies in European agricultural landscapes. Agric. Ecosyst. Environ. 279, 43–52. https://doi.org/10.1016/j.agee.2019.04.009 (2019).
Google Scholar
Ewers, R. M. & Didham, R. K. Confounding factors in the detection of species responses to habitat fragmentation. Biol. Rev. Camb. Philos. Soc. 81, 117–142. https://doi.org/10.1017/s1464793105006949 (2006).
Google Scholar
Blaauw, B. R. & Isaacs, R. Larger patches of diverse floral resources increase insect pollinator density, diversity, and their pollination of native wild flowers. Basic Appl. Ecol. 15, 701–711. https://doi.org/10.1016/j.baae.2014.10.001 (2014).
Google Scholar
Martin, E. A. et al. The interplay of landscape composition and configuration: new pathways to manage functional biodiversity and agroecosystem services across Europe. Ecol. Lett. 22, 1083–1094. https://doi.org/10.1111/ele.13265 (2019).
Google Scholar
Bihaly, Á., Dóra, V., Lajos, K. & Sárospataki, M. Effect of semi-natural habitat patches on the pollinator assemblages of sunflower in an intensive agricultural landscape. Tájökológiai Lapok 16, 45–52 (2018).
Foldesi, R. et al. Relationships between wild bees, hoverflies and pollination success in apple orchards with different landscape contexts. Agric. For. Entomol. 18, 68–75. https://doi.org/10.1111/afe.12135 (2016).
Google Scholar
Sárospataki, M. et al. The role of local and landscape level factors in determining bumblebee abundance and richness. Acta Zool. Acad. Sci. Hung. 62, 387–407. https://doi.org/10.17109/AZH.62.4.387.2016 (2016).
Google Scholar
Schellhorn, N. A., Gagic, V. & Bommarco, R. Time will tell: resource continuity bolsters ecosystem services. Trends Ecol. Evol. 30, 524–530. https://doi.org/10.1016/j.tree.2015.06.007 (2015).
Google Scholar
Tscharntke, T. et al. Landscape moderation of biodiversity patterns and processes: eight hypotheses. Biol. Rev. Camb. Philos. Soc. 87, 661–685. https://doi.org/10.1111/j.1469-185X.2011.00216.x (2012).
Google Scholar
Stephens, A. E. A. & Myers, J. H. Resource concentration by insects and implications for plant populations. J. Ecol. 100, 923–931. https://doi.org/10.1111/j.1365-2745.2012.01971.x (2012).
Google Scholar
Tscheulin, T., Neokosmidis, L., Petanidou, T. & Settele, J. Influence of landscape context on the abundance and diversity of bees in Mediterranean olive groves. Bull. Entomol. Res. 101, 557–564. https://doi.org/10.1017/S0007485311000149 (2011).
Google Scholar
Kennedy, C. M. et al. A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems. Ecol. Lett. 16, 584–599. https://doi.org/10.1111/ele.12082 (2013).
Google Scholar
Eurostat. Archive: Main annual crop statistics, https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Main_annual_crop_statistics&oldid=389868#Oilseeds (2018).
KSH. STADAT tables – Agriculture. http://www.ksh.hu/docs/hun/xstadat/xstadat_eves/i_omn007b.html. (KSH, 2019).
Hevia, V. et al. Bee diversity and abundance in a livestock drove road and its impact on pollination and seed set in adjacent sunflower fields. Agric. Ecosyst. Environ. 232, 336–344. https://doi.org/10.1016/j.agee.2016.08.021 (2016).
Google Scholar
Silva, C. et al. Bee pollination highly improves oil quality in sunflower. Sociobiology 65, 583–590. https://doi.org/10.13102/sociobiology.v65i4.3367 (2018).
Google Scholar
Terzić, S., Miklič, V. & Čanak, P. Review of 40 years of research carried out in Serbia on sunflower pollination. OCL 24, D608 (2017).
Google Scholar
Perrot, T. et al. Experimental quantification of insect pollination on sunflower yield, reconciling plant and field scale estimates. Basic Appl. Ecol. 34, 75–84. https://doi.org/10.1016/j.baae.2018.09.005 (2019).
Google Scholar
Martin, C. S. & Farina, W. M. Honeybee floral constancy and pollination efficiency in sunflower (Helianthus annuus) crops for hybrid seed production. Apidologie 47, 161–170 (2016).
Google Scholar
DeGrandi-Hoffman, G. & Watkins, J. C. The foraging activity of honey bees Apis mellifera and non—Apis bees on hybrid sunflowers (Helianthus annuus) and its influence on cross—pollination and seed set. J. Apic. Res. 39, 37–45. https://doi.org/10.1080/00218839.2000.11101019 (2000).
Google Scholar
Cerrutti, N. & Pontet, C. Differential attractiveness of sunflower cultivars to the honeybee Apis mellifera L. OCL 23, D204 (2016).
Google Scholar
Chambó, E. D., Garcia, R. C., Oliveira, N. T. E. D. & Duarte-Júnior, J. B. Honey bee visitation to sunflower: effects on pollination and plant genotype. Sci. Agric. 68, 647–651 (2011).
Google Scholar
Oz, M., Karasu, A., Cakmak, I., Goksoy, A. T. & Turan, Z. M. Effects of honeybee (Apis mellifera) pollination on seed set in hybrid sunflower (Helianthus annuus L.). Afr. J. Biotechnol. 8 (2009).
Puškadija, Z. et al. Influence of weather conditions on honey bee visits (Apis mellifera carnica) during sunflower (Helianthus annuus L.) blooming period. Poljoprivreda 13, 230–233 (2007).
Greenleaf, S. S. & Kremen, C. Wild bees enhance honey bees’ pollination of hybrid sunflower. Proc. Natl. Acad. Sci. USA 103, 13890–13895 (2006).
Google Scholar
Nderitu, J., Nyamasyo, G., Kasina, M. & Oronje, M. Diversity of sunflower pollinators and their effect on seed yield in Makueni District, Eastern Kenya. Span. J. Agric. Res. 6, 271–278 (2008).
Google Scholar
Carvalheiro, L. G. et al. Natural and within-farmland biodiversity enhances crop productivity. Ecol. Lett. 14, 251–259. https://doi.org/10.1111/j.1461-0248.2010.01579.x (2011).
Google Scholar
Sardiñas, H. S. & Kremen, C. Pollination services from field-scale agricultural diversification may be context-dependent. Agric. Ecosyst. Environ. 207, 17–25 (2015).
Google Scholar
Riedinger, V., Renner, M., Rundlof, M., Steffan-Dewenter, I. & Holzschuh, A. Early mass-flowering crops mitigate pollinator dilution in late-flowering crops. Landscape Ecol. 29, 425–435. https://doi.org/10.1007/s10980-013-9973-y (2014).
Google Scholar
Bennett, A. B. & Isaacs, R. Landscape composition influences pollinators and pollination services in perennial biofuel plantings. Agric. Ecosyst. Environ. 193, 1–8. https://doi.org/10.1016/j.agee.2014.04.016 (2014).
Google Scholar
Lowenstein, D. M., Huseth, A. S. & Groves, R. L. Response of wild bees (Hymenoptera: Apoidea: Anthophila) to surrounding land cover in Wisconsin pickling cucumber. Environ. Entomol. 41, 532–540. https://doi.org/10.1603/EN11241 (2012).
Google Scholar
Pfister, S. C. et al. Dominance of cropland reduces the pollen deposition from bumble bees. Sci. Rep. 8, 13873. https://doi.org/10.1038/s41598-018-31826-3 (2018).
Google Scholar
Gathmann, A. & Tscharntke, T. Foraging ranges of solitary bees. J. Anim. Ecol. 71, 757–764. https://doi.org/10.1046/j.1365-2656.2002.00641.x (2002).
Google Scholar
Greenleaf, S. S., Williams, N. M., Winfree, R. & Kremen, C. Bee foraging ranges and their relationship to body size. Oecologia 153, 589–596. https://doi.org/10.1007/s00442-007-0752-9 (2007).
Google Scholar
Lihoreau, M., Chittka, L., Le Comber, S. C. & Raine, N. E. Bees do not use nearest-neighbour rules for optimization of multi-location routes. Biol. Lett. 8, 13–16. https://doi.org/10.1098/rsbl.2011.0661 (2012).
Google Scholar
Berger-Tal, O. & Bar-David, S. Recursive movement patterns: review and synthesis across species. Ecosphere 6, 149. https://doi.org/10.1890/es15-00106.1 (2015).
Google Scholar
Wesserling, J. Habitatwahl und Ausbreitungsverhalten von Stechimmen (Hymenoptera: Aculeata) in Sandgebieten unterschiedlicher Sukzessionsstadien, University of Karlsruhe, (1996).
Hagler, J. R., Mueller, S., Teuber, L. R., Machtley, S. A. & Van Deynze, A. Foraging range of honey bees, Apis mellifera, in alfalfa seed production fields. J. Insect Sci. 11, 144 (2011).
Google Scholar
Couvillon, M. J. et al. Honey bee foraging distance depends on month and forage type. Apidologie 46, 61–70. https://doi.org/10.1007/s13592-014-0302-5 (2015).
Google Scholar
Beekman, M. & Ratnieks, F. L. W. Long-range foraging by the honey-bee, Apis mellifera L.. Funct. Ecol. 14, 490–496. https://doi.org/10.1046/j.1365-2435.2000.00443.x (2000).
Google Scholar
Gary, N. E., Witherell, P. C. & Lorenzen, K. Effect of age on honey bee foraging distance and pollen collection. Environ. Entomol. 10, 950–952 (1981).
Google Scholar
Walther-Hellwig, K. & Frankl, R. Foraging habitats and foraging distances of bumblebees, Bombus spp. (Hym., Apidae), in an agricultural landscape. J. Appl. Entomol. 124, 299–306. https://doi.org/10.1046/j.1439-0418.2000.00484.x (2000).
Google Scholar
Dramstad, W. E. Do bumblebees (Hymenoptera: Apidae) really forage close to their nests?. J. Insect Behav. 9, 163–182. https://doi.org/10.1007/bf02213863 (1996).
Google Scholar
Knight, M. E. et al. An interspecific comparison of foraging range and nest density of four bumblebee (Bombus) species. Mol. Ecol. 14, 1811–1820 (2005).
Google Scholar
Wolf, S. & Moritz, R. F. Foraging distance in Bombus terrestris L. (Hymenoptera: Apidae). Apidologie 39, 419–427 (2008).
Google Scholar
Osborne, J. L. et al. Bumblebee flight distances in relation to the forage landscape. J. Anim. Ecol. 77, 406–415 (2008).
Google Scholar
Zurbuchen, A. et al. Maximum foraging ranges in solitary bees: only few individuals have the capability to cover long foraging distances. Biol. Conserv. 143, 669–676 (2010).
Google Scholar
Hopfenmuller, S., Steffan-Dewenter, I. & Holzschuh, A. Trait-specific responses of wild bee communities to landscape composition, configuration and local factors. PLoS ONE 9, e104439. https://doi.org/10.1371/journal.pone.0104439 (2014).
Google Scholar
Hung, K. J., Kingston, J. M., Albrecht, M., Holway, D. A. & Kohn, J. R. The worldwide importance of honey bees as pollinators in natural habitats. Proc R Soc Biol Sci Ser B 285, 20172140. https://doi.org/10.1098/rspb.2017.2140 (2018).
Google Scholar
Requier, F. et al. Honey bee diet in intensive farmland habitats reveals an unexpectedly high flower richness and a major role of weeds. Ecol. Appl. 25, 881–890. https://doi.org/10.1890/14-1011.1 (2015).
Google Scholar
Bonoan, R. E., Gonzalez, J. & Starks, P. T. The perils of forcing a generalist to be a specialist: lack of dietary essential amino acids impacts honey bee pollen foraging and colony growth. J. Apic. Res. 59, 95–103. https://doi.org/10.1080/00218839.2019.1656702 (2020).
Google Scholar
Di Pasquale, G. et al. Influence of pollen nutrition on honey bee health: Do pollen quality and diversity matter?. PLoS ONE 8, e72016. https://doi.org/10.1371/journal.pone.0072016 (2013).
Google Scholar
Di Pasquale, G. et al. Variations in the availability of pollen resources affect honey bee health. PLoS ONE 11, e0162818. https://doi.org/10.1371/journal.pone.0162818 (2016).
Google Scholar
Alaux, C., Ducloz, F., Crauser, D. & Le Conte, Y. Diet effects on honeybee immunocompetence. Biol. Lett. 6, 562–565. https://doi.org/10.1098/rsbl.2009.0986 (2010).
Google Scholar
Colwell, M. J., Williams, G. R., Evans, R. C. & Shutler, D. Honey bee-collected pollen in agro-ecosystems reveals diet diversity, diet quality, and pesticide exposure. Ecol. Evol. 7, 7243–7253. https://doi.org/10.1002/ece3.3178 (2017).
Google Scholar
Zhang, G., St. Clair, A. L., Dolezal, A., Toth, A. L. & O’Neal, M. Honey Bee (Hymenoptera: Apidea) pollen forage in a highly cultivated agroecosystem: limited diet diversity and its relationship to virus resistance. J. Econ. Entomol. 113, 1062–1072 (2020).
QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation. http://qgis.osgeo.org. (2009).
FÖMI. MePAR, the Hungarian Agricultural Land Parcel Identification System, accessed 22 November 2019 http://www.mepar.hu/ (2016).
McGarigal, K., Cushman, S. & Ene, E. Spatial Pattern Analysis Program for Categorical and Continuous Maps. available from http://www.umass.edu/landeco/research/fragstats/fragstats.html. (University of Massachusetts, 2012).
McGarigal, K. FRAGSTATS help. Documentation for FRAGSTATS, 4. (2014).
McGarigal, K. (2017). Landscape metrics for categorical map patterns. Lecture Notes. Available online: accessed 28 Feb 2021 http://www.umass.edu/landeco/teaching/landscape_ecology/schedule/chapter9_metrics.pdf.
R Core Team. R: A Language and Environment for Statistical Computing. version 3.6.0. https://www.R-project.org. (R Foundation for Statistical Computing, 2020).
Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528. https://doi.org/10.1093/bioinformatics/bty633 (2019).
Google Scholar
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models Usinglme4. Journal of Statistical Software 67, https://doi.org/10.18637/jss.v067.i01 (2015).
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).
DHARMa: Residual Diagnostics for Hierarchical (Multi-Level / Mixed) Regression Models. v. 0.3.3.0. (2020).
Fox, J. & Weisberg, S. An R Companion to Applied Regression, Third edition. Sage, Thousand Oaks CA. https://socialsciences.mcmaster.ca/jfox/Books/Companion/. (2019).
Source: Ecology - nature.com