in

Landscape structure affects the sunflower visiting frequency of insect pollinators

  • 1.

    Stanley, D. & Stout, J. Pollinator sharing between mass-flowering oilseed rape and co-flowering wild plants: implications for wild plant pollination. Plant Ecol. 215, 315–325. https://doi.org/10.1007/s11258-014-0301-7 (2014).

    Article 

    Google Scholar 

  • 2.

    Kovacs-Hostyanszki, A. et al. Contrasting effects of mass-flowering crops on bee pollination of hedge plants at different spatial and temporal scales. Ecol. Appl. 23, 1938–1946. https://doi.org/10.1890/12-2012.1 (2013).

    Article 
    PubMed 

    Google Scholar 

  • 3.

    Holzschuh, A. et al. Mass-flowering crops dilute pollinator abundance in agricultural landscapes across Europe. Ecol. Lett. 19, 1228–1236. https://doi.org/10.1111/ele.12657 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 4.

    Potts, S. G. et al. Global pollinator declines: trends, impacts and drivers. Trends Ecol. Evol. 25, 345–353. https://doi.org/10.1016/j.tree.2010.01.007 (2010).

    Article 
    PubMed 

    Google Scholar 

  • 5.

    Kremen, C., Williams, N. M. & Thorp, R. W. Crop pollination from native bees at risk from agricultural intensification. Proc Natl Acad Sci U S A 99, 16812–16816. https://doi.org/10.1073/pnas.262413599 (2002).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 6.

    Ollerton, J., Erenler, H., Edwards, M. & Crockett, R. Pollinator declines: extinctions of aculeate pollinators in Britain and the role of large-scale agricultural changes. Science 346, 1360–1362. https://doi.org/10.1126/science.1257259 (2014).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 7.

    Kovacs-Hostyanszki, A. et al. Ecological intensification to mitigate impacts of conventional intensive land use on pollinators and pollination. Ecol. Lett. 20, 673–689. https://doi.org/10.1111/ele.12762 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 8.

    Tscharntke, T., Klein, A. M., Kruess, A., Steffan-Dewenter, I. & Thies, C. Landscape perspectives on agricultural intensification and biodiversity: ecosystem service management. Ecol. Lett. 8, 857–874. https://doi.org/10.1111/j.1461-0248.2005.00782.x (2005).

    Article 

    Google Scholar 

  • 9.

    Holland, J. M. et al. Semi-natural habitats support biological control, pollination and soil conservation in Europe: a review. Agron. Sustain. Dev. https://doi.org/10.1007/s13593-017-0434-x (2017).

    Article 

    Google Scholar 

  • 10.

    Garibaldi, L. A. et al. Stability of pollination services decreases with isolation from natural areas despite honey bee visits. Ecol. Lett. 14, 1062–1072. https://doi.org/10.1111/j.1461-0248.2011.01669.x (2011).

    Article 
    PubMed 

    Google Scholar 

  • 11.

    Bartomeus, I. et al. Contribution of insect pollinators to crop yield and quality varies with agricultural intensification. PeerJ 2, e328. https://doi.org/10.7717/peerj.328 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 12.

    Holzschuh, A., Dudenhoffer, J. H. & Tscharntke, T. Landscapes with wild bee habitats enhance pollination, fruit set and yield of sweet cherry. Biol. Conserv. 153, 101–107. https://doi.org/10.1016/j.biocon.2012.04.032 (2012).

    Article 

    Google Scholar 

  • 13.

    Marini, L. et al. Crop management modifies the benefits of insect pollination in oilseed rape. Agric. Ecosyst. Environ. 207, 61–66. https://doi.org/10.1016/j.agee.2015.03.027 (2015).

    Article 

    Google Scholar 

  • 14.

    Persson, A. S. & Smith, H. G. Seasonal persistence of bumblebee populations is affected by landscape context. Agric. Ecosyst. Environ. 165, 201–209. https://doi.org/10.1016/j.agee.2012.12.008 (2013).

    Article 

    Google Scholar 

  • 15.

    Rundlof, M., Persson, A. S., Smith, H. G. & Bommarco, R. Late-season mass-flowering red clover increases bumble bee queen and male densities. Biol. Conserv. 172, 138–145. https://doi.org/10.1016/j.biocon.2014.02.027 (2014).

    Article 

    Google Scholar 

  • 16.

    Westphal, C., Steffan-Dewenter, I. & Tscharntke, T. Mass flowering oilseed rape improves early colony growth but not sexual reproduction of bumblebees. J. Appl. Ecol. 46, 187–193. https://doi.org/10.1111/j.1365-2664.2008.01580.x (2009).

    Article 

    Google Scholar 

  • 17.

    Williams, N. M., Regetz, J. & Kremen, C. Landscape-scale resources promote colony growth but not reproductive performance of bumble bees. Ecology 93, 1049–1058. https://doi.org/10.1890/11-1006.1 (2012).

    Article 
    PubMed 

    Google Scholar 

  • 18.

    Steffan-Dewenter, I., Munzenberg, U., Burger, C., Thies, C. & Tscharntke, T. Scale-dependent effects of landscape context on three pollinator guilds. Ecology 83, 1421–1432. https://doi.org/10.2307/3071954 (2002).

    Article 

    Google Scholar 

  • 19.

    Steffan-Dewenter, I., Münzenberg, U. & Tscharntke, T. Pollination, seed set and seed predation on a landscape scale. Proc. Natl. Acad. Sci. USA 268, 1685–1690. https://doi.org/10.1098/rspb.2001.1737 (2001).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Bartual, A. et al. The potential of different semi-natural habitats to sustain pollinators and natural enemies in European agricultural landscapes. Agric. Ecosyst. Environ. 279, 43–52. https://doi.org/10.1016/j.agee.2019.04.009 (2019).

    Article 

    Google Scholar 

  • 21.

    Ewers, R. M. & Didham, R. K. Confounding factors in the detection of species responses to habitat fragmentation. Biol. Rev. Camb. Philos. Soc. 81, 117–142. https://doi.org/10.1017/s1464793105006949 (2006).

    Article 
    PubMed 

    Google Scholar 

  • 22.

    Blaauw, B. R. & Isaacs, R. Larger patches of diverse floral resources increase insect pollinator density, diversity, and their pollination of native wild flowers. Basic Appl. Ecol. 15, 701–711. https://doi.org/10.1016/j.baae.2014.10.001 (2014).

    Article 

    Google Scholar 

  • 23.

    Martin, E. A. et al. The interplay of landscape composition and configuration: new pathways to manage functional biodiversity and agroecosystem services across Europe. Ecol. Lett. 22, 1083–1094. https://doi.org/10.1111/ele.13265 (2019).

    Article 
    PubMed 

    Google Scholar 

  • 24.

    Bihaly, Á., Dóra, V., Lajos, K. & Sárospataki, M. Effect of semi-natural habitat patches on the pollinator assemblages of sunflower in an intensive agricultural landscape. Tájökológiai Lapok 16, 45–52 (2018).

    Google Scholar 

  • 25.

    Foldesi, R. et al. Relationships between wild bees, hoverflies and pollination success in apple orchards with different landscape contexts. Agric. For. Entomol. 18, 68–75. https://doi.org/10.1111/afe.12135 (2016).

    Article 

    Google Scholar 

  • 26.

    Sárospataki, M. et al. The role of local and landscape level factors in determining bumblebee abundance and richness. Acta Zool. Acad. Sci. Hung. 62, 387–407. https://doi.org/10.17109/AZH.62.4.387.2016 (2016).

    Article 

    Google Scholar 

  • 27.

    Schellhorn, N. A., Gagic, V. & Bommarco, R. Time will tell: resource continuity bolsters ecosystem services. Trends Ecol. Evol. 30, 524–530. https://doi.org/10.1016/j.tree.2015.06.007 (2015).

    Article 
    PubMed 

    Google Scholar 

  • 28.

    Tscharntke, T. et al. Landscape moderation of biodiversity patterns and processes: eight hypotheses. Biol. Rev. Camb. Philos. Soc. 87, 661–685. https://doi.org/10.1111/j.1469-185X.2011.00216.x (2012).

    Article 
    PubMed 

    Google Scholar 

  • 29.

    Stephens, A. E. A. & Myers, J. H. Resource concentration by insects and implications for plant populations. J. Ecol. 100, 923–931. https://doi.org/10.1111/j.1365-2745.2012.01971.x (2012).

    Article 

    Google Scholar 

  • 30.

    Tscheulin, T., Neokosmidis, L., Petanidou, T. & Settele, J. Influence of landscape context on the abundance and diversity of bees in Mediterranean olive groves. Bull. Entomol. Res. 101, 557–564. https://doi.org/10.1017/S0007485311000149 (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 31.

    Kennedy, C. M. et al. A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems. Ecol. Lett. 16, 584–599. https://doi.org/10.1111/ele.12082 (2013).

    Article 
    PubMed 

    Google Scholar 

  • 32.

    Eurostat. Archive: Main annual crop statistics, https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Main_annual_crop_statistics&oldid=389868#Oilseeds (2018).

  • 33.

    KSH. STADAT tables – Agriculture. http://www.ksh.hu/docs/hun/xstadat/xstadat_eves/i_omn007b.html. (KSH, 2019).

  • 34.

    Hevia, V. et al. Bee diversity and abundance in a livestock drove road and its impact on pollination and seed set in adjacent sunflower fields. Agric. Ecosyst. Environ. 232, 336–344. https://doi.org/10.1016/j.agee.2016.08.021 (2016).

    Article 

    Google Scholar 

  • 35.

    Silva, C. et al. Bee pollination highly improves oil quality in sunflower. Sociobiology 65, 583–590. https://doi.org/10.13102/sociobiology.v65i4.3367 (2018).

    Article 

    Google Scholar 

  • 36.

    Terzić, S., Miklič, V. & Čanak, P. Review of 40 years of research carried out in Serbia on sunflower pollination. OCL 24, D608 (2017).

    Article 

    Google Scholar 

  • 37.

    Perrot, T. et al. Experimental quantification of insect pollination on sunflower yield, reconciling plant and field scale estimates. Basic Appl. Ecol. 34, 75–84. https://doi.org/10.1016/j.baae.2018.09.005 (2019).

    Article 

    Google Scholar 

  • 38.

    Martin, C. S. & Farina, W. M. Honeybee floral constancy and pollination efficiency in sunflower (Helianthus annuus) crops for hybrid seed production. Apidologie 47, 161–170 (2016).

    Article 

    Google Scholar 

  • 39.

    DeGrandi-Hoffman, G. & Watkins, J. C. The foraging activity of honey bees Apis mellifera and non—Apis bees on hybrid sunflowers (Helianthus annuus) and its influence on cross—pollination and seed set. J. Apic. Res. 39, 37–45. https://doi.org/10.1080/00218839.2000.11101019 (2000).

    Article 

    Google Scholar 

  • 40.

    Cerrutti, N. & Pontet, C. Differential attractiveness of sunflower cultivars to the honeybee Apis mellifera L. OCL 23, D204 (2016).

    Article 

    Google Scholar 

  • 41.

    Chambó, E. D., Garcia, R. C., Oliveira, N. T. E. D. & Duarte-Júnior, J. B. Honey bee visitation to sunflower: effects on pollination and plant genotype. Sci. Agric. 68, 647–651 (2011).

    Article 

    Google Scholar 

  • 42.

    Oz, M., Karasu, A., Cakmak, I., Goksoy, A. T. & Turan, Z. M. Effects of honeybee (Apis mellifera) pollination on seed set in hybrid sunflower (Helianthus annuus L.). Afr. J. Biotechnol. 8 (2009).

  • 43.

    Puškadija, Z. et al. Influence of weather conditions on honey bee visits (Apis mellifera carnica) during sunflower (Helianthus annuus L.) blooming period. Poljoprivreda 13, 230–233 (2007).

    Google Scholar 

  • 44.

    Greenleaf, S. S. & Kremen, C. Wild bees enhance honey bees’ pollination of hybrid sunflower. Proc. Natl. Acad. Sci. USA 103, 13890–13895 (2006).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 45.

    Nderitu, J., Nyamasyo, G., Kasina, M. & Oronje, M. Diversity of sunflower pollinators and their effect on seed yield in Makueni District, Eastern Kenya. Span. J. Agric. Res. 6, 271–278 (2008).

    Article 

    Google Scholar 

  • 46.

    Carvalheiro, L. G. et al. Natural and within-farmland biodiversity enhances crop productivity. Ecol. Lett. 14, 251–259. https://doi.org/10.1111/j.1461-0248.2010.01579.x (2011).

    Article 
    PubMed 

    Google Scholar 

  • 47.

    Sardiñas, H. S. & Kremen, C. Pollination services from field-scale agricultural diversification may be context-dependent. Agric. Ecosyst. Environ. 207, 17–25 (2015).

    Article 

    Google Scholar 

  • 48.

    Riedinger, V., Renner, M., Rundlof, M., Steffan-Dewenter, I. & Holzschuh, A. Early mass-flowering crops mitigate pollinator dilution in late-flowering crops. Landscape Ecol. 29, 425–435. https://doi.org/10.1007/s10980-013-9973-y (2014).

    Article 

    Google Scholar 

  • 49.

    Bennett, A. B. & Isaacs, R. Landscape composition influences pollinators and pollination services in perennial biofuel plantings. Agric. Ecosyst. Environ. 193, 1–8. https://doi.org/10.1016/j.agee.2014.04.016 (2014).

    Article 

    Google Scholar 

  • 50.

    Lowenstein, D. M., Huseth, A. S. & Groves, R. L. Response of wild bees (Hymenoptera: Apoidea: Anthophila) to surrounding land cover in Wisconsin pickling cucumber. Environ. Entomol. 41, 532–540. https://doi.org/10.1603/EN11241 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 51.

    Pfister, S. C. et al. Dominance of cropland reduces the pollen deposition from bumble bees. Sci. Rep. 8, 13873. https://doi.org/10.1038/s41598-018-31826-3 (2018).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 52.

    Gathmann, A. & Tscharntke, T. Foraging ranges of solitary bees. J. Anim. Ecol. 71, 757–764. https://doi.org/10.1046/j.1365-2656.2002.00641.x (2002).

    Article 

    Google Scholar 

  • 53.

    Greenleaf, S. S., Williams, N. M., Winfree, R. & Kremen, C. Bee foraging ranges and their relationship to body size. Oecologia 153, 589–596. https://doi.org/10.1007/s00442-007-0752-9 (2007).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • 54.

    Lihoreau, M., Chittka, L., Le Comber, S. C. & Raine, N. E. Bees do not use nearest-neighbour rules for optimization of multi-location routes. Biol. Lett. 8, 13–16. https://doi.org/10.1098/rsbl.2011.0661 (2012).

    Article 
    PubMed 

    Google Scholar 

  • 55.

    Berger-Tal, O. & Bar-David, S. Recursive movement patterns: review and synthesis across species. Ecosphere 6, 149. https://doi.org/10.1890/es15-00106.1 (2015).

    Article 

    Google Scholar 

  • 56.

    Wesserling, J. Habitatwahl und Ausbreitungsverhalten von Stechimmen (Hymenoptera: Aculeata) in Sandgebieten unterschiedlicher Sukzessionsstadien, University of Karlsruhe, (1996).

  • 57.

    Hagler, J. R., Mueller, S., Teuber, L. R., Machtley, S. A. & Van Deynze, A. Foraging range of honey bees, Apis mellifera, in alfalfa seed production fields. J. Insect Sci. 11, 144 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 58.

    Couvillon, M. J. et al. Honey bee foraging distance depends on month and forage type. Apidologie 46, 61–70. https://doi.org/10.1007/s13592-014-0302-5 (2015).

    Article 

    Google Scholar 

  • 59.

    Beekman, M. & Ratnieks, F. L. W. Long-range foraging by the honey-bee, Apis mellifera L.. Funct. Ecol. 14, 490–496. https://doi.org/10.1046/j.1365-2435.2000.00443.x (2000).

    Article 

    Google Scholar 

  • 60.

    Gary, N. E., Witherell, P. C. & Lorenzen, K. Effect of age on honey bee foraging distance and pollen collection. Environ. Entomol. 10, 950–952 (1981).

    Article 

    Google Scholar 

  • 61.

    Walther-Hellwig, K. & Frankl, R. Foraging habitats and foraging distances of bumblebees, Bombus spp. (Hym., Apidae), in an agricultural landscape. J. Appl. Entomol. 124, 299–306. https://doi.org/10.1046/j.1439-0418.2000.00484.x (2000).

    Article 

    Google Scholar 

  • 62.

    Dramstad, W. E. Do bumblebees (Hymenoptera: Apidae) really forage close to their nests?. J. Insect Behav. 9, 163–182. https://doi.org/10.1007/bf02213863 (1996).

    Article 

    Google Scholar 

  • 63.

    Knight, M. E. et al. An interspecific comparison of foraging range and nest density of four bumblebee (Bombus) species. Mol. Ecol. 14, 1811–1820 (2005).

    CAS 
    Article 

    Google Scholar 

  • 64.

    Wolf, S. & Moritz, R. F. Foraging distance in Bombus terrestris L. (Hymenoptera: Apidae). Apidologie 39, 419–427 (2008).

    Article 

    Google Scholar 

  • 65.

    Osborne, J. L. et al. Bumblebee flight distances in relation to the forage landscape. J. Anim. Ecol. 77, 406–415 (2008).

    Article 

    Google Scholar 

  • 66.

    Zurbuchen, A. et al. Maximum foraging ranges in solitary bees: only few individuals have the capability to cover long foraging distances. Biol. Conserv. 143, 669–676 (2010).

    Article 

    Google Scholar 

  • 67.

    Hopfenmuller, S., Steffan-Dewenter, I. & Holzschuh, A. Trait-specific responses of wild bee communities to landscape composition, configuration and local factors. PLoS ONE 9, e104439. https://doi.org/10.1371/journal.pone.0104439 (2014).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 68.

    Hung, K. J., Kingston, J. M., Albrecht, M., Holway, D. A. & Kohn, J. R. The worldwide importance of honey bees as pollinators in natural habitats. Proc R Soc Biol Sci Ser B 285, 20172140. https://doi.org/10.1098/rspb.2017.2140 (2018).

    Article 

    Google Scholar 

  • 69.

    Requier, F. et al. Honey bee diet in intensive farmland habitats reveals an unexpectedly high flower richness and a major role of weeds. Ecol. Appl. 25, 881–890. https://doi.org/10.1890/14-1011.1 (2015).

    Article 
    PubMed 

    Google Scholar 

  • 70.

    Bonoan, R. E., Gonzalez, J. & Starks, P. T. The perils of forcing a generalist to be a specialist: lack of dietary essential amino acids impacts honey bee pollen foraging and colony growth. J. Apic. Res. 59, 95–103. https://doi.org/10.1080/00218839.2019.1656702 (2020).

    Article 

    Google Scholar 

  • 71.

    Di Pasquale, G. et al. Influence of pollen nutrition on honey bee health: Do pollen quality and diversity matter?. PLoS ONE 8, e72016. https://doi.org/10.1371/journal.pone.0072016 (2013).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 72.

    Di Pasquale, G. et al. Variations in the availability of pollen resources affect honey bee health. PLoS ONE 11, e0162818. https://doi.org/10.1371/journal.pone.0162818 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 73.

    Alaux, C., Ducloz, F., Crauser, D. & Le Conte, Y. Diet effects on honeybee immunocompetence. Biol. Lett. 6, 562–565. https://doi.org/10.1098/rsbl.2009.0986 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 74.

    Colwell, M. J., Williams, G. R., Evans, R. C. & Shutler, D. Honey bee-collected pollen in agro-ecosystems reveals diet diversity, diet quality, and pesticide exposure. Ecol. Evol. 7, 7243–7253. https://doi.org/10.1002/ece3.3178 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 75.

    Zhang, G., St. Clair, A. L., Dolezal, A., Toth, A. L. & O’Neal, M. Honey Bee (Hymenoptera: Apidea) pollen forage in a highly cultivated agroecosystem: limited diet diversity and its relationship to virus resistance. J. Econ. Entomol. 113, 1062–1072 (2020).

  • 76.

    QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation. http://qgis.osgeo.org. (2009).

  • 77.

    FÖMI. MePAR, the Hungarian Agricultural Land Parcel Identification System, accessed 22 November 2019 http://www.mepar.hu/ (2016).

  • 78.

    McGarigal, K., Cushman, S. & Ene, E. Spatial Pattern Analysis Program for Categorical and Continuous Maps. available from http://www.umass.edu/landeco/research/fragstats/fragstats.html. (University of Massachusetts, 2012).

  • 79.

    McGarigal, K. FRAGSTATS help. Documentation for FRAGSTATS, 4. (2014).

  • 80.

    McGarigal, K. (2017). Landscape metrics for categorical map patterns. Lecture Notes. Available online: accessed 28 Feb 2021 http://www.umass.edu/landeco/teaching/landscape_ecology/schedule/chapter9_metrics.pdf.

  • 81.

    R Core Team. R: A Language and Environment for Statistical Computing. version 3.6.0. https://www.R-project.org. (R Foundation for Statistical Computing, 2020).

  • 82.

    Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528. https://doi.org/10.1093/bioinformatics/bty633 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 83.

    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models Usinglme4. Journal of Statistical Software 67, https://doi.org/10.18637/jss.v067.i01 (2015).

  • 84.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).

    Google Scholar 

  • 85.

    DHARMa: Residual Diagnostics for Hierarchical (Multi-Level / Mixed) Regression Models. v. 0.3.3.0. (2020).

  • 86.

    Fox, J. & Weisberg, S. An R Companion to Applied Regression, Third edition. Sage, Thousand Oaks CA. https://socialsciences.mcmaster.ca/jfox/Books/Companion/. (2019).


  • Source: Ecology - nature.com

    Negative emissions, positive economy

    Individual US diets show wide variation in water scarcity footprints