CONAB—Companhia Nacional de Abastecimento. Acompanhamento da Safra Brasileira de Grãos. V.7 – SAFRA 2019/20 – N. 12 – Décimo segundo levantamento. https://www.conab.gov.br/info-agro/safras (2020).
Panizzi, A. R. & Corrêa-Ferreira, B. S. Dynamics in the insect fauna adaption to soybeans in the tropics. Trends Entomol. 1, 71–88 (1997).
Cattelan, A. J. & Dall’Agnol, A. The rapid soybean growth in Brazil. Oilseeds Fats Crops Lipids 25, D102 (2018).
Freitas, P. L. & Landers, J. N. The transformation of agriculture in Brazil through development and adoption of Zero Tillage Conservation Agriculture. Int. Soil Wat. Cons. Res. 2, 35–46 (2014).
Brookes, G., Taheripour, F. & Tyner, W. E. The contribution of glyphosate to agriculture and potential impact of restrictions on use at the global level. GM Crops Food 8, 216–228 (2017).
Google Scholar
Bueno, R. C. O. F., Bueno, A. F., Moscardi, F., Parra, J. R. P. & Hoffmann-Campo, C. B. Lepidopteran larva consumption of soybean foliage: Basis for developing multiple-species economic thresholds for pest management decisions. Pest Manag. Sci. 67, 170–174 (2011).
Google Scholar
Panizzi, A. R. History and contemporary perspectives of the integrated pest management of soybean in Brazil. Neotrop. Entomol. 42, 119–127 (2013).
Google Scholar
Bortolotto, A. et al. The use of soybean integrated pest management in Brazil: A review. Embrapa Soja-Artigo em periódico indexado (ALICE) Agron. Sci. Biotechnol. 1, 25–32 (2015).
CIB; AGROCONSULT. Impactos Econômicos e Sócio-ambientais da Tecnologia de Plantas Resistentes a Insetos no Brasil – Análise Histórica, Perspectivas e Desafios Futuros. http://apps.agr.br/wp-content/uploads/2018/12/Impactos-do-Milho-Bt-no-Brasil.pdf (2018).
Brookes, G. The farm level economic and environmental contribution of Intacta soybeans in South America: The first five years. GM Crops Food 9, 140–151 (2018).
Google Scholar
Macrae, T. C. et al. Laboratory and field evaluations of transgenic soybean exhibiting high-dose expression of a synthetic Bacillus thuringiensis cry1A gene for control of Lepidoptera. J. Econ. Entomol. 98, 577–587 (2005).
Google Scholar
Bernardi, O. et al. Assessment of the high-dose concept and level of control provided by MON 87701× MON 89788 soybean against Anticarsia gemmatalis and Pseudoplusia includens (Lepidoptera: Noctuidae) in Brazil. Pest Manag. Sci. 68, 1083–1091 (2012).
Google Scholar
Bernardi, O. et al. High levels of biological activity of Cry1Ac protein expressed on MON 87701× MON 89788 soybean against Heliothis virescens (Lepidoptera: Noctuidae). Pest Manag. Sci. 70, 588–594 (2014).
Google Scholar
Dourado, P. M. et al. High susceptibility to Cry1Ac and low resistance allele frequency reduce the risk of resistance of Helicoverpa armigera to Bt soybean in Brazil. PLoS ONE 11, e0161388 (2016).
Google Scholar
Bernardi, O. et al. Low susceptibility of Spodoptera cosmioides, Spodoptera eridania and Spodoptera frugiperda (Lepidoptera: Noctuidae) to genetically-modified soybean expressing Cry1Ac protein. Crop Prot. 58, 33–40 (2014).
Google Scholar
Edgerton, M. D. et al. Transgenic insect resistance traits increase corn yield and yield stability. Nat. Biotechnol. 30, 493–496 (2012).
Google Scholar
Lu, Y., Wu, K., Jiang, Y., Guo, Y. & Desneux, N. Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services. Nature 487, 362–365 (2012).
Google Scholar
Carrière, Y. et al. Long-term regional suppression of pink bollworm by Bacillus thuringiensis cotton. Proc. Natl. Acad. Sci. USA 100, 1519–1523 (2003).
Google Scholar
Hutchison, W. D. et al. Areawide suppression of European corn borer with Bt maize reaps savings to non-Bt maize growers. Science 330, 222–225 (2010).
Google Scholar
Wu, K. M., Lu, Y. H., Feng, H. Q., Jiang, Y. Y. & Zhao, J. Z. Suppression of cotton bollworm in multiple crops in China in areas with Bt toxin–containing cotton. Science 321, 1676–1678 (2008).
Google Scholar
Dively, G. P. et al. Regional pest suppression associated with widespread Bt maize adoption benefits vegetable growers. Proc. Natl. Acad. Sci. USA 115, 3320–3325 (2018).
Google Scholar
Lu, Y. et al. Mirid bug outbreaks in multiple crops correlated with wide-scale adoption of Bt cotton in China. Science 328, 1151–1154 (2010).
Google Scholar
Zhao, J. H., Ho, P. & Azadi, H. Benefits of Bt cotton counterbalanced by secondary pests? Perceptions of ecological change in China. Environ. Monit. Assess. 173, 985–994 (2011).
Google Scholar
Gould, F. Sustainability of transgenic insecticidal cultivars: Integrating pest genetics and ecology. Annu. Rev. Entomol. 43, 701–726 (1998).
Google Scholar
Van Rensburg, J. B. J. First report of field resistance by the stem borer, Busseola fusca (Fuller) to Bt-transgenic maize. S. Afr. J. Plant Soil 24, 147–151 (2007).
Google Scholar
Storer, N. P. et al. Discovery and characterization of field resistance to Bt maize: Spodoptera frugiperda (Lepidoptera: Noctuidae) in Puerto Rico. J. Econ. Entomol. 103, 1031–1038 (2010).
Google Scholar
Dhurua, S. & Gujar, G. T. Field-evolved resistance to Bt toxin Cry1Ac in the pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae), from India. Pest Manag. Sci. 67, 898–903 (2011).
Google Scholar
Gassmann, A. J., Petzold-Maxwell, J. L., Keweshan, R. S. & Dunbar, M. W. Field-evolved resistance to Bt maize by western corn rootworm. PLoS ONE 6, e22629 (2011).
Google Scholar
Farias, J. R. et al. Field-evolved resistance to Cry1F maize by Spodoptera frugiperda (Lepidoptera: Noctuidae) in Brazil. Crop Prot. 64, 150–158 (2014).
Google Scholar
Fatoretto, J. C., Michel, A. P., Silva Filho, M. C. & Silva, N. Adaptive potential of fall armyworm (Lepidoptera: Noctuidae) limits Bt trait durability in Brazil. J. Integr. Pest Manag. 8, 17 (2017).
Google Scholar
Silva, C. S. et al. Population expansion and genomic adaptation to agricultural environments of the soybean looper, Chrysodeixis includens. Evol. Appl. 13, 2071–2085 (2020).
Google Scholar
Herzog, D. C. Sampling soybean looper on soybean. In Sampling Methods in Soybean Entomology (eds Koogan, M. & Herzog, D. C.) 141–168 (Springer, 1980).
Google Scholar
Sosa-Gómez, D. R. et al. Manual de Identificação de Insetos e Outros Invertebrados da Cultura da Soja (Embrapa Soja-Documentos (INFOTECA-E), 2014).
Gilligan, T. M. & Passoa, S. C. LepIntercept–An identification resource for intercepted Lepidoptera larvae. (Identification Technology Program (ITP), 2014). http://idtools.org/id/leps/lepintercept/key.html.
R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020). https://www.R-project.org/.
Kaster, M. & Farias, J. R. B. Regionalização dos Testes de Valor de Cultivo e Uso e da indicação de Cultivares de Soja-terceira Aproximação (Embrapa Soja-Documentos (INFOTECA-E), 2012).
Sosa-Gómez, D. R., Delpin, K. E., Moscardi, F. & Nozaki, M. D. H. The impact of fungicides on Nomuraea rileyi (Farlow) Samson epizootics and on populations of Anticarsia gemmatalis Hübner (Lepidoptera: Noctuidae), on soybean. Neotrop. Entomol. 32, 287–291 (2003).
Google Scholar
Specht, A., Paula-Moraes, S. V. & Sosa-Gómez, D. R. Host plants of Chrysodeixis includens (Walker) (Lepidoptera, Noctuidae, Plusiinae). Rev. Bras. Entomol. 59, 343–345 (2015).
Google Scholar
Andrade, K. et al. Bioecological characteristics of Chrysodeixis includens (Lepidoptera: Noctuidae) fed on different hosts. Austral. Entomol. 55, 449–454 (2016).
Google Scholar
Moonga, M. N. & Davis, J. A. Partial life history of Chrysodeixis includens (Lepidoptera: Noctuidae) on summer hosts. J. Econ. Entomol. 109, 1713–1719 (2016).
Google Scholar
Specht, A. et al. Biotic potential and life tables of Chrysodeixis includens (Lepidoptera: Noctuidae), Rachiplusia nu, and Trichoplusia ni on soybean and forage turnip. J. Insect Sci. 19, 8 (2019).
Google Scholar
Zulin, D., Ávila, C. J. & Schlick-Souza, E. C. Population fluctuation and vertical distribution of the soybean looper (Chrysodeixis includes) in soybean culture. Am. J. Plant Sci. 9, 1544–1556 (2018).
Google Scholar
Stacke, R. F. et al. Field-evolved resistance to chitin synthesis inhibitor insecticides by soybean looper, Chrysodeixis includens (Lepidoptera: Noctuidae), in Brazil. Chemosphere 259, 127499 (2020).
Google Scholar
Stacke, R. F. et al. Inheritance of lambda-cyhalothrin resistance, fitness costs and cross-resistance to other pyrethroids in soybean looper, Chrysodeixis includens (Lepidoptera: Noctuidae). Crop Prot. 131, 105096 (2020).
Google Scholar
Yano, S. A. et al. High susceptibility and low resistance allele frequency of Chrysodeixis includens (Lepidoptera: Noctuidae) field populations to Cry1Ac in Brazil. Pest Manag. Sci. 72, 1578–1584 (2016).
Google Scholar
Silva, M. T. B. & Moscardi, F. Field efficacy of the nucleopolyhedrovirus of Anticarsia gemmatalis Hübner (Lepidoptera: Noctuidae): Effect of formulations, water pH, volume and time of application, and type of spray nozzle. Neotrop. Entomol. 31, 75–83 (2002).
Google Scholar
Herzog, D. C. & Todd, J. W. Sampling velvetbean caterpillar on soybean. In Sampling Methods in Soybean Entomology (eds Koogan, M. & Herzog, D. C.) 107–140 (Springer, 1980).
Google Scholar
Panizzi, A. R., Oliveira, L. J. & Silva, J. J. Survivorship, larval development and pupal weight of Anticarsia gemmatalis (Hübner) (Lepidoptera: Noctuidae) feeding on potential leguminous host plants. Neotrop. Entomol. 33, 563–567 (2004).
Google Scholar
Leite, N. A., Alves-Pereira, A., Corrêa, A. S., Zucchi, M. I. & Omoto, C. Demographics and genetic variability of the new world bollworm (Helicoverpa zea) and the old world bollworm (Helicoverpa armigera) in Brazil. PLoS ONE 9, e113286 (2014).
Google Scholar
Leite, N. A. et al. Pan-American similarities in genetic structures of Helicoverpa armigera and Helicoverpa zea (Lepidoptera: Noctuidae) with implications for hybridization. Environ. Entomol. 46, 1024–1034 (2017).
Google Scholar
Sosa-Gómez, D. R. et al. Timeline and geographical distribution of Helicoverpa armigera (Hübner) (Lepidoptera, Noctuidae: Heliothinae) in Brazil. Rev. Bras. Entomol. 60, 101–104 (2016).
Google Scholar
Dourado, P. M. et al. Host plant use of Helicoverpa spp. (Lepidoptera: Noctuidae) in the Brazilian agricultural landscape. Pest Manag. Sci. 77, 780–794 (2021).
Google Scholar
Czepak, C., Albernaz, K. C., Vivan, L. M., Guimarães, H. O. & Carvalhais, T. First reported occurrence of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) in Brazil. Pesqui. Agropecu. Trop. 43, 110–113 (2013).
Google Scholar
Gomes, E. S., Santos, V. & Ávila, C. J. Biology and fertility life table of Helicoverpa armigera (Lepidoptera: Noctuidae) in different hosts. Entomol. Sci. 20, 419–426 (2017).
Google Scholar
Luttrell, R. G. & Mink, J. S. Damage to cotton fruiting structures by the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). J. Cotton Sci. 3, 35–44 (1999).
Martinelli, S., Barata, R. M., Zucchi, M. I., DeCastroSilva-Filho, M. & Omoto, C. Molecular variability of Spodoptera frugiperda (Lepidoptera: Noctuidae) populations associated to maize and cotton crops in Brazil. J. Econ. Entomol. 99, 519–526 (2006).
Google Scholar
Barros, E. M., Torres, J. B., Ruberson, J. R. & Oliveira, M. D. Development of Spodoptera frugiperda on different hosts and damage to reproductive structures in cotton. Ent. Exp. Appl. 137, 237–245 (2010).
Google Scholar
Silva, D. M. D. et al. Biology and nutrition of Spodoptera frugiperda (Lepidoptera: Noctuidae) fed on different food sources. Sci. Agric. 74, 18–31 (2017).
Google Scholar
Machado, E. P. et al. Cross-crop resistance of Spodoptera frugiperda selected on Bt maize to genetically-modified soybean expressing Cry1Ac and Cry1F proteins in Brazil. Sci. Rep. 10, 1–9 (2020).
Google Scholar
Montezano, D. G. et al. Host plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas. Afr. Entomol. 26, 286–300 (2018).
Google Scholar
Nagoshi, R. N. & Meagher, R. L. Review of fall armyworm (Lepidoptera: Noctuidae) genetic complexity and migration. Fla. Entomol. 91, 546–554 (2008).
Westbrook, J. K., Nagoshi, R. N., Meagher, R. L., Fleischer, S. J. & Jairam, S. Modeling seasonal migration of fall armyworm moths. Int. J. Biometeorol. 60, 255–267 (2016).
Google Scholar
Garcia, A. G., Ferreira, C. P., Godoy, W. A. & Meagher, R. L. A computational model to predict the population dynamics of Spodoptera frugiperda. J. Pest Sci. 92, 429–441 (2019).
Google Scholar
Diez-Rodríguez, G. I. & Omoto, C. Herança da resistência de Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) a lambda-cialotrina. Neotrop. Entomol. 30, 311–316 (2001).
Google Scholar
Carvalho, R. A., Omoto, C., Field, L. M., Williamson, M. S. & Bass, C. Investigating the molecular mechanisms of organophosphate and pyrethroid resistance in the fall armyworm Spodoptera frugiperda. PLoS ONE 8, e62268 (2013).
Google Scholar
Nascimento, A. R. B. et al. Genetic basis of Spodoptera frugiperda (Lepidoptera: Noctuidae) resistance to the chitin synthesis inhibitor lufenuron. Pest Manag. Sci. 72, 810–815 (2016).
Google Scholar
Okuma, D. M. et al. Inheritance and fitness costs of Spodoptera frugiperda (Lepidoptera: Noctuidae) resistance to Spinosad in Brazil. Pest Manag. Sci. 74, 1441–1448 (2018).
Google Scholar
Bolzan, A. et al. Selection and characterization of the inheritance of resistance of Spodoptera frugiperda (Lepidoptera: Noctuidae) to chlorantraniliprole and cross-resistance to other diamide insecticides. Pest Manag. Sci. 75, 2682–2689 (2019).
Google Scholar
Lira, E. C. et al. Resistance of Spodoptera frugiperda (Lepidoptera: Noctuidae) to spinetoram: Inheritance and cross-resistance to spinosad. Pest Manag. Sci. 76, 2674–2680 (2020).
Google Scholar
Paulillo, L. C. M. et al. Changes in midgut endopeptidase activity of Spodoptera frugiperda (Lepidoptera: Noctuidae) are responsible for adaptation to soybean proteinase inhibitors. J. Econ. Entomol. 93, 892–896 (2000).
Google Scholar
Silva-Brandão, K. L. et al. Transcript expression plasticity as a response to alternative larval host plants in the speciation process of corn and rice strains of Spodoptera frugiperda. BMC Genom. 18, 1–15 (2017).
Google Scholar
Montezano, D. G., Specht, A., Sosa-Gomez, D. R., Roque-Specht, V. F. & Barros, N. M. Immature stages of Spodoptera eridania (Lepidoptera: Noctuidae): Developmental parameters and host plants. J. Insect Sci. 14, 238 (2014).
Google Scholar
Santos, K. B., Meneguim, A. M. & Neves, P. M. O. J. Biologia de Spodoptera eridania (Cramer) (Lepidoptera: Noctuidae) em diferentes hospedeiros. Neotrop. Entomol. 34, 903–910 (2005).
Google Scholar
Justiniano, W., Fernandes, M. G. & Viana, C. L. T. P. Diversity, composition and population dynamics of arthropods in the genetically modified soybeans Roundup Ready® RR1 (GT 40-3-2) and Intacta RR2 PRO (MON87701 x MON89788). J. Agric. Sci. 6, 33 (2014).
Specht, A. et al. Owlet moths (Lepidoptera: Noctuoidea) associated with Bt and non-Bt soybean in the Brazilian savanna. Braz. J. Biol. 79, 248–256 (2019).
Google Scholar
Specht, A. & Roque-Specht, V. F. Immature stages of Spodoptera cosmioides (Lepidoptera: Noctuidae): Developmental parameters and host plants. Zoologia 33, e20160053 (2016).
Google Scholar
Habib, M. E. M., Paleari, M. L. & Amaral, M. E. C. Effect of three larval diets on the development of the armyworm, Spodoptera latifascia Walker, 1856 (Lepidoptera: Noctuidae). Rev. Bras. Zool. 1, 177–182 (1983).
Google Scholar
Silva, D. M. et al. Biology of Spodoptera eridania and Spodoptera cosmioides (Lepidoptera: Noctuidae) on different host plants. Fla. Entomol. 100, 752–760 (2017).
Google Scholar
Tomquelski, G. V. & Maruyama, L. C. T. Lagarta-da-macã em soja. Rev. Cultiv. 117, 20–22 (2009).
Blanco, C. A. Heliothis virescens and Bt cotton in the United States. GM Crops Food 3, 201–212 (2012).
Google Scholar
Barrionuevo, M. J., Murúa, M. G., Goane, L., Meagher, R. & Navarro, F. Life table studies of Rachiplusia nu (Guenée) and Chrysodeixis (= Pseudoplusia) includens (Walker) (Lepidoptera: Noctuidae) on artificial diet. Fla. Entomol. 95, 944–951 (2012).
Google Scholar
Specht, A. et al. Ocorrência de Rachiplusia nu (Guenée) (Lepidoptera: Noctuidae) em Fumo (Nicotiana tabacum L.) no Rio Grande do Sul. Neotrop. Entomol. 35, 705–706 (2006).
Google Scholar
Trentin, L. B. et al. The complete genome of Rachiplusia nu nucleopolyhedrovirus (RanuNPV) and the identification of a baculoviral CPD-photolyase homolog. Virology 534, 64–71 (2019).
Google Scholar
Perini, C. R. et al. Genetic structure of two Plusiinae species suggests recent expansion of Chrysodeixis includens in the American continent. Agric. For. Entomol. 23, 2502–3260 (2020).
Bacalhau, F. B. et al. Performance of genetically modified soybean expressing the Cry1A. 105, Cry2Ab2, and Cry1Ac proteins against key Lepidopteran pests in Brazil. J. Econ. Entomol. 113, 2883–2889 (2020).
Google Scholar
Machado, E. P. et al. Survival and development of Spodoptera eridania, Spodoptera cosmioides and Spodoptera albula (Lepidoptera: Noctuidae) on genetically-modified soybean expressing Cry1Ac and Cry1F proteins. Pest Manag. Sci. 76, 4029–4035 (2020).
Google Scholar
Horikoshi, R. J. et al. Effective dominance of resistance of Spodoptera frugiperda to Bt maize and cotton varieties: Implications for resistance management. Sci. Rep. 6, 1–8 (2016).
Google Scholar
Source: Ecology - nature.com