Barnosky, A. D. & Lindsey, E. L. Timing of Quaternary megafaunal extinction in South America in relation to human arrival and climate change. Quat. Int. 217, 10–29 (2010).
Google Scholar
Broughton, J. M. & Weitzel, E. M. Population reconstructions for humans and megafauna suggest mixed causes for North American Pleistocene extinctions. Nat. Commun. 9, 1–12 (2018).
Google Scholar
Haynes, G. in The Encyclopedia of the Anthropocene 1 (eds. DellaSala, D. A., & Goldstein, M. I.) 219–226 (Springer, 2018).
Wolfe, A. L. & Broughton, J. M. A foraging theory perspective on the associational critique of North American Pleistocene overkill. J. Archaeol. Sci. 119, 105162 (2020).
Google Scholar
Rothschild, B. M. & Laub, R. Hyperdisease in the late Pleistocene: validation of an early 20th century hypothesis. Naturwissenschaften 93, 557–564 (2006).
Google Scholar
Borrero, L. A. in American megafaunal extinctions at the end of the Pleistocene (ed. Haynes, G.) 145–168 (Springer, 2009).
Cione, A. L., Tonni, E. P., & Soibelzon, L. in American megafaunal extinctions at the end of the Pleistocene (ed. Haynes, G.) 125–144 (Springer, 2009).
Lima-Ribeiro, M. S., Nogués-Bravo, D., Terribile, L. C., Batra, P. & Diniz-Filho, J. A. F. Climate and humans set the place and time of Proboscidean extinction in late Quaternary of South America. Palaeogeogr. Palaeoclimatol. Palaeoecol. 392, 546–556 (2013).
Google Scholar
Grayson, D. K. & Meltzer, D. J. A requiem for North American overkill. J. Archaeol. Sci. 30, 585–593 (2003).
Google Scholar
Firestone, R. B. et al. Evidence for an extraterrestrial impact 12,900 years ago that contributed to the megafaunal extinctions and the Younger Dryas cooling. PNAS 104, 16016–16021 (2007).
Google Scholar
Waters, M. R. & Stafford, T. W. in Paleoamerican Odyssey (eds. Graf, K. E., Ketron, C. V. & Waters, M.) 543–562 (Texas A&M University Press, 2013).
Politis, G., Prado, J. L., & Beukens, R. P. in Ancient Peoples and Landscapes (ed. Johnson, E.) 187–205 (Tech University Press, 1995).
Martin, P. S. The Discovery of America: The first Americans may have swept the Western Hemisphere and decimated its fauna within 1000 years. Science 179, 969–974 (1973).
Google Scholar
Fiedel, S. J. in Paleoamerican origins: beyond Clovis (eds. Bonnichsen, R., Lepper, B. T., Stanford, D. & Waters M. R.) 97–102 (Texas A&M University Press, 2005).
Surovell, T. A., Pelton, S. R., Anderson-Sprecher, R. & Myers, A. D. Test of Martin’s overkill hypothesis using radiocarbon dates on extinct megafauna. PNAS 113, 886–891 (2016).
Google Scholar
Pedro, J. B. et al. Southern Ocean deep convection as a driver of Antarctic warming events. Geophys. Res. Lett. 43, 2192–2199 (2016).
Google Scholar
Politis, G. in Clovis. Origins and Adaptations (eds Bonnichsen, R. & Turnmire, K.) 287–301 (Texas A&M University Press, 1991).
Nami, H. G. Fishtailed projectile points in the Americas: Remarks and hypotheses on the peopling of northern South America and beyond. Quat. Int., in press (2020).
Waters, M. R., Amorosi, T. & Stafford, T. W. Redating Fell’s cave, Chile and the chronological placement of the Fishtail projectile point. Am. Antiq. 80, 376–386 (2015).
Google Scholar
Loponte, D., Carbonera, M. & Silvestre, R. Fishtail projectile points from South America: the Brazilian record. Archaeol. Discov. 3, 85 (2015).
Google Scholar
Nami, H. G. & Yataco Capcha, J. Further Data on Fell Points from the Southern Cone of South America. PaleoAmerica 6, 379–386 (2020).
Google Scholar
Weitzel, C., Mazzia, N. & Flegenheimer, N. Assessing Fishtail points distribution in the southern Cone. Quat. Int. 473, 161–172 (2018).
Google Scholar
Martínez, G., Gutiérrez, M. A. & Tonni, E. P. Paleoenvironments and faunal extinctions: analysis of the archaeological assemblages at the Paso Otero locality (Argentina) during the Late Pleistocene–Early Holocene. Quat. Int 299, 53–63 (2013).
Google Scholar
Prates, L., Politis, G. G. & Perez, S. I. Rapid radiation of humans in South America after the last glacial maximum: a radiocarbon-based study. PLoS ONE 15, e0236023 (2020).
Google Scholar
Barnosky, A. D., Koch, P. L., Feranec, R. S., Wing, S. L. & Shabel, A. B. Assessing the causes of late Pleistocene extinctions on the continents. Science 306, 70–75 (2004).
Google Scholar
Buchanan, B., Collard, M., Hamilton, M. J. & O’Brien, M. J. Points and prey: a quantitative test of the hypothesis that prey size influences early Paleoindian projectile point form. J. Archaeol. Sci. 38, 852–864 (2011).
Google Scholar
Timpson, A. et al. Reconstructing regional population fluctuations in the European Neolithic using radiocarbon dates: a new case-study using an improved method. J. Archaeol. Sci. 52, 549–557 (2014).
Google Scholar
Crema, E. R., Habu, J., Kobayashi, K. & Madella, M. Summed probability distribution of 14C dates suggests regional divergences in the population dynamics of the Jomon period in eastern Japan. PLoS ONE 11, e0154809 (2016).
Google Scholar
Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).
Google Scholar
Elith, J. & Leathwick, J. R. Species distribution models: ecological explanation and prediction across space and time. Ann. Rev. Ecol. Evol. Syst. 40, 677–697 (2009).
Google Scholar
d’Amen, M. et al. Using species richness and functional traits predictions to constrain assemblage predictions from stacked species distribution models. J. Biogeog. 42, 1255–1266 (2015).
Google Scholar
McCulloch, R. D. et al. Climatic inferences from glacial and palaeoecological evidence at the last glacial termination, southern South America. J. Quat. Sci.: Published Quat. Res. Assoc. 15, 409–417 (2000).
Google Scholar
Moreno, P. I., Villa-Martínez, R., Cárdenas, M. L. & Sagredo, E. A. Deglacial changes of the southern margin of the southern westerly winds revealed by terrestrial records from SW Patagonia (52 S). Quat. Sci. Rev. 41, 1–21 (2012).
Google Scholar
Barnosky, A. D. et al. Variable impact of late-Quaternary megafaunal extinction in causing ecological state shifts in North and South America. PNAS 113, 856–861 (2016).
Google Scholar
Politis, G. & Messineo, P. The Campo Laborde site: New evidence for the Holocene survival of Pleistocene megafauna in the Argentine Pampas. Quat. Int. 191, 98–114 (2008).
Google Scholar
Politis, G. G., Messineo, P. G., Stafford, T. W. & Lindsey, E. L. Campo Laborde: a Late Pleistocene giant ground sloth kill and butchering site in the Pampas. Sci. Adv. 5, eaau4546 (2019).
Google Scholar
Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: an open‐source release of Maxent. Ecography 40, 887–893 (2017).
Google Scholar
Fordham, D. A. et al. PaleoView: a tool for generating continuous climate projections spanning the last 21 000 years at regional and global scales. Ecography 40, 1348–1358 (2017).
Google Scholar
Brown, J. L., Hill, D. J., Dolan, A. M., Carnaval, A. C. & Haywood, A. M. PaleoClim, high spatial resolution paleoclimate surfaces for global land areas. Sci. Data 5, 1–9 (2018).
Google Scholar
QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org (2020).
Warren, D. L., Glor, R. E. & Turelli, M. Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62, 2868–2883 (2008).
Google Scholar
Tonni, E. P., Carlini, A. A., Yané, G. J. S. & Figini, A. J. Cronología radiocarbónica y condiciones climáticas en la “Cueva del Milodón” (sur de Chile) durante el Pleistoceno Tardío. Ameghiniana 40, 609–615 (2003).
Tonni, E. P. & Carlini, A. A. Neogene vertebrates from Argentine Patagonia: their relationship with the most significant climatic changes. Dev. Quat. Sci. 11, 269–283 (2008).
Schmitt, S., Pouteau, R., Justeau, D., de Boissieu, F. & Birnbaum, P. ssdm: an r package to predict distribution of species richness and composition based on stacked species distribution models. Methods Ecol. Evol. 8, 1795–1803 (2017).
Google Scholar
Mothé, D. et al. An artifact embedded in an extinct proboscidean sheds new light on human-megafaunal interactions in the quaternary of South America. Quat. Sci. Rev. 229, 106125 (2020).
Google Scholar
Jaimes, A. Condiciones tafonómicas, huesos modificados y comportamiento humano en los sitios de matanza de El Vano (Tradición El Jobo) y Lange/Ferguson (Tradición Clovis). Bol. Antropol. Am. 41, 159–184 (2005).
Moreno, P. I. et al. Renewed glacial activity during the Antarctic Cold reversal and persistence of cold conditions until 11.5 ka in SW Patagonia. Geology 37, 375–378 (2009).
Google Scholar
Obase, T. & Abe‐Ouchi, A. Abrupt Bølling‐Allerød warming simulated under gradual forcing of the last deglaciation. Geophys. Res. Lett. 46, 11397–11405 (2019).
Google Scholar
de Porras, M. E. et al. Environmental and climatic changes in central Chilean Patagonia since the late glacial (Mallín El Embudo, 44 S). Clim 10, 1063–1078 (2014).
Google Scholar
Mendelová, M., Hein, A. S., Rodes, A., Smedley, R. K. & Xu, S. Glacier expansion in central Patagonia during the Antarctic Cold Reversal followed by retreat and stabilisation during the Younger Dryas. Quat. Sci. Rev. 227, 106047 (2020).
Google Scholar
Villavicencio, N. A. et al. Combination of humans, climate, and vegetation change triggered Late Quaternary megafauna extinction in the Última Esperanza region, southern Patagonia, Chile. Ecography 39, 125–140 (2016).
Google Scholar
Prieto, A. R. Vegetational History of the Late glacial-holocene transition in the grasslands of Eastern Argentina. Palaeogr. Palaeoclimatol. Palaeoecol. 157, 167–188 (2000).
Google Scholar
Miotti, L., Tonni, E. & Marchionni, L. What happened when the Pleistocene megafauna became extinct? Quat. Int. 473, 173–189 (2018).
Google Scholar
Méndez, C. et al. J. L. Human effects in Holocene fire dynamics of central Western Patagonia (~ 44° S, Chile). Front. Ecol. Evol. 4, 100 (2016).
Google Scholar
Pires, M. M. et al. Pleistocene megafaunal interaction networks became more vulnerable after human arrival. Proc. R. Soc. Lon. [Biol.] 282, 20151367 (2015).
Pires, M. et al. Before, during and after megafaunal extinctions: human impact on Pleistocene-Holocene trophic networks in South Patagonia. Quat. Sci. Rev. 250, 106296 (2020).
Google Scholar
Haynes, G. & Klimowicz, J. Recent elephant-carcass utilization as a basis for interpreting mammoth exploitation. Quat. Int. 359, 19–37 (2015).
Google Scholar
Surovell, T. A. & Grund, B. S. The associational critique of quaternary overkill and why it is largely irrelevant to the extinction debate. Am. Antiq. 77, 672–687 (2012).
Google Scholar
Rindel, D. D., Moscardi, B. F., & Perez, S. I. The distribution of the guanaco (Lama guanicoe) in Patagonia during Late Pleistocene–Holocene and its importance for prehistoric human diet. Holocene, https://doi.org/10.1177/0959683620981689 (2020).
Metcalf, J. L. et al. Synergistic roles of climate warming and human occupation in Patagonian megafaunal extinctions during the Last Deglaciation. Sci. Adv. 2, e1501682 (2016).
Google Scholar
Villavicencio, N. A., Corcoran, D. & Marquet, P. A. Assessing the causes behind the late quaternary extinction of Hhorses in South america using species distribution models. Fron. Ecol. Evol. 7, 226 (2019).
Google Scholar
Prado, J. L., & Alberdi, M. T. Fossil Horses of South America. Phylogeny, Systemics and Ecology. (Springer, 2017).
Varela, L. & Fariña, R. A. Co-occurrence of mylodontid sloths and insights on their potential distributions during the late Pleistocene. Quat. Res. 85, 66–74 (2016).
Google Scholar
R-Development Core Team R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/ (2020).
Menegaz, A. N., Goin, F. J. & Jaureguizar, E. O. Análisis morfológico y morfométrico multivariado de los representantes fósiles y vivientes del género Lama (Artiodactyla, Camelidae). Sus implicancias sistemáticas, biogeográficas, ecológicas y biocronológicas. Ameghiniana 26, 153–172 (1989).
Scherer, C. S. Os Camelidae Lamini (Mammalia, Artiodactyla) do plesistoceno da América do Sul: aspectos taxonômicos e filogenéticos. Unpublished PhD Thesis, Universidade Federal do Rio Grande do Sul. (2009).
Weinstock, J. et al. The Late Pleistocene distribution of vicuñas (Vicugna vicugna) and the “extinction” of the gracile llama (“Lama gracilis”): new molecular data. Quat. Sci. Rev. 28, 1369–1373 (2009).
Google Scholar
Mothé, D., Avilla, L. S. & Cozzuol, M. A. The south American gomphotheres (Mammalia, Proboscidea, Gomphotheriidae): taxonomy, phylogeny, and biogeography. J. Mamm. Evol. 20, 23–32 (2013).
Google Scholar
Prado, J. L. & Alberdi, M. T. Global evolution of equidae and gomphotheriidae from South America. Integ. Zool. 9, 434–443 (2014).
Google Scholar
Source: Ecology - nature.com