in

Lateral expansion of northern peatlands calls into question a 1,055 GtC estimate of carbon storage

  • 1.

    Loisel, J. et al. Insights and issues with estimating northern peatland carbon stocks and fluxes since the Last Glacial Maximum. Earth Sci. Rev. 165, 59–80 (2017).

    Article 

    Google Scholar 

  • 2.

    Nichols, J. E. & Peteet, D. M. Rapid expansion of northern peatlands and doubled estimate of carbon storage. Nat. Geosci. 12, 917–922 (2019).

    Article 

    Google Scholar 

  • 3.

    Yu, Z., Loisel, J., Brosseau, D. P., Beilman, D. W. & Hunt, S. J. Global peatland dynamics since the Last Glacial Maximum. Geophys. Res. Lett. 37, L13402 (2010).

    Google Scholar 

  • 4.

    Ruppel, M., Väliranta, M., Virtanen, T. & Korhola, A. Postglacial spatiotemporal peatland initiation and lateral expansion dynamics in North America and northern Europe. Holocene 23, 1596–1606 (2013).

    Article 

    Google Scholar 

  • 5.

    Ireland, A. W., Booth, R. K., Hotchkiss, S. C. & Schmitz, J. E. A comparative study of within-basin and regional peatland development: implications for peatland carbon dynamics. Quat. Sci. Rev. 61, 85–95 (2013).

    Article 

    Google Scholar 

  • 6.

    Almquist-Jacobson, H. & Foster, D. R. Toward an integrated model for raised-bog development: theory and field evidence. Ecology 76, 2503–2516 (1995).

    Article 

    Google Scholar 

  • 7.

    Loisel, J., Yu, Z., Parsekian, A., Nolan, J. & Slater, L. Quantifying landscape morphology influence on peatland lateral expansion using ground-penetrating radar (GPR) and peat core analysis. J. Geophys. Res. Biogeosciences 118, 373–384 (2013).

    Article 

    Google Scholar 

  • 8.

    Pluchon, N., Hugelius, G., Kuusinen, N. & Kuhry, P. Recent paludification rates and effects on total ecosystem carbon storage in two boreal peatlands of northeast European Russia. Holocene 24, 1126–1136 (2014).

    Article 

    Google Scholar 

  • 9.

    Gorham, E., Lehman, C., Dyke, A., Janssens, J. & Dyke, L. Temporal and spatial aspects of peatland initiation following deglaciation in North America. Quat. Sci. Rev. 26, 300–311 (2007).

    Article 

    Google Scholar 

  • 10.

    Malmström, C. Degerö Stormyr: en botanisk hydrologisk och utvecklingshistorisk undersokning av ett nordsvenskt myrkomplex no. 20 (Meddelanden fran Statens Skogsforsoksanstalt, 1923).

  • 11.

    Weckström, J., Seppä, H. & Korhola, A. Climatic influence on peatland formation and lateral expansion in sub-Arctic Fennoscandia. Boreas 39, 761–769 (2010).

    Article 

    Google Scholar 

  • 12.

    Joosten, H. The Global Peatland CO2 Picture: Peatland Status and Emissions in All Countries of the World (Wetlands International, 2009).

  • 13.

    Williams, J. W. et al. The Neotoma Paleoecology Database, a multiproxy, international, community-curated data resource. Quat. Res. 89, 156–177 (2018).

    Article 

    Google Scholar 

  • 14.

    Hugelius, G. et al. Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw. Proc. Natl Acad. Sci. USA 117, 20438–20446 (2020).

    Article 

    Google Scholar 

  • 15.

    Reyes, A. V. & Cooke, C. A. Northern peatland initiation lagged abrupt increases in deglacial atmospheric CH4. Proc. Natl Acad. Sci. USA 108, 4748–4753 (2011).

    Article 

    Google Scholar 

  • 16.

    Gorham, E., Lehman, C., Dyke, A., Clymo, D. & Janssens, J. Long-term carbon sequestration in North American peatlands. Quat. Sci. Rev. 58, 77–82 (2012).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Engineered yeast could expand biofuels’ reach

    Insights into rumen microbial biosynthetic gene cluster diversity through genome-resolved metagenomics