in

Learning of a mimic odor combined with nectar nonsugar compounds enhances honeybee pollination of a commercial crop

  • 1.

    Klein, A. M. et al. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B 274(1608), 303–313 (2007).

    Article 

    Google Scholar 

  • 2.

    Aizen, M. A. & Harder, L. D. The global stock of domesticated honey bees is growing slower than agricultural demand for pollination. Curr. Biol. 19, 915–918 (2009).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Aizen, M. A. et al. Global agricultural productivity is threatened by increasing pollinator dependence without a parallel increase in crop diversification. Glob. Change Biol. 25, 3516–3527 (2019).

    ADS 
    Article 

    Google Scholar 

  • 4.

    Ribbands, C. R. The scent perception of the honey bee. Proc. R. Soc. Lond. B 143(912), 367–379 (1955).

    ADS 
    Article 

    Google Scholar 

  • 5.

    von Frisch, K. The Dance Language and Orientation of Bees (Harvard University Press, 1967).

    Google Scholar 

  • 6.

    Reinhard, J., Srinivasan, M. V., Guez, D. & Zhang, S. W. Floral scents induce recall of navigational and visual memories in honeybees. J. Exp. Biol. 207(25), 4371–4381 (2004).

    Article 

    Google Scholar 

  • 7.

    Arenas, A., Fernández, V. M. & Farina, W. M. Floral odor learning within the hive affects honeybees’ foraging decisions. Naturwissenschaften 94, 218–222 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 8.

    Farina, W. M., Grüter, C. & Díaz, P. C. Social learning of floral odours inside the honeybee hive. Proc. R. Soc. Lond. B. 272(1575), 1923–1928 (2005).

    Google Scholar 

  • 9.

    Farina, W. M., Grüter, C., Acosta, L. & Mc Cabe, S. Honeybees learn floral odors while receiving nectar from foragers within the hive. Naturwissenschaften 94(1), 55–60 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 10.

    Grüter, C., Acosta, L. E. & Farina, W. M. Propagation of olfactory information within the honeybee hive. Behav. Ecol. Sociobiol. 60(5), 707–715 (2006).

    Article 

    Google Scholar 

  • 11.

    Arenas, A., Fernández, V. M. & Farina, W. M. Floral scents experienced within the colony affect long-term foraging preferences in honeybees. Apidologie 39, 714–722 (2008).

    Article 

    Google Scholar 

  • 12.

    Balbuena, M. S., Arenas, A. & Farina, W. M. Floral scents learned inside the honeybee hive have a long-lasting effect on recruitment. Anim. Behav. 84, 77–83 (2012).

    Article 

    Google Scholar 

  • 13.

    Farina, W. M., Arenas, A., Díaz, P. C., Susic Martin, C. & Estravis Barcala, M. C. Learning of a mimic odor within beehives improves pollination service efficiency in a commercial crop. Curr. Biol. 30, 4284–4290. https://doi.org/10.1016/j.cub.2020.08.018 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 14.

    Stevenson, P. C., Nicolson, S. W. & Wright, G. A. Plant secondary metabolites in nectar: Impacts on pollinators and ecological functions. Funct. Ecol. 31(1), 65–75 (2017).

    Article 

    Google Scholar 

  • 15.

    Baker, H. G. Non-sugar chemical constituents of nectar. Apidologie 8(4), 349–356 (1977).

    Article 

    Google Scholar 

  • 16.

    Chalisova, N. I. et al. Effect of encoding amino acids on associative learning of honeybee Apis mellifera. J. Evol. Biochem. Fisiol. 47(6), 607 (2011).

    Article 

    Google Scholar 

  • 17.

    Strauss, S. Y. & Whittall, J. B. Non-pollinator agents of selection on floral traits. In Ecology and Evolution of flowers (eds. Harder, L. D. & Barret, S. C. H.) 120–138 (Oxford University Press, 2006).

  • 18.

    McArt, S. H., Koch, H., Irwin, R. E. & Adler, L. S. Arranging the bouquet of disease: Floral traits and the transmission of plant and animal pathogens. Ecol. Lett. 17, 624–636 (2014).

    Article 

    Google Scholar 

  • 19.

    Gatica Hernández, I., Palottini, F., Macri, I., Galmarini, C. R. & Farina, W. M. Appetitive behavior of the honey bee Apis mellifera in response to phenolic compounds naturally found in nectars. J. Exp. Biol. https://doi.org/10.1242/jeb.189910 (2019).

    Article 

    Google Scholar 

  • 20.

    Stevenson, P. C. For antagonists and mutualists: The paradox of insect toxic secondary metabolites in nectar and pollen. Phytochem. Rev. 19(3), 603–614 (2020).

    CAS 
    Article 

    Google Scholar 

  • 21.

    Carlesso, D., Smargiassi, S., Pasquini, E., Bertelli, G. & Baracchi, D. Nectar non-protein amino acids (NPAAs) do not change nectar palatability but enhance learning and memory in honey bees. Sci. Rep. 11(1), 1–14 (2021).

    Article 

    Google Scholar 

  • 22.

    Kretschmar, J. A. & Baumann, T. W. Caffeine in Citrus flowers. Phytochemistry 52(1), 19–23 (1999).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Wright, G. A. et al. Caffeine in floral nectar enhances a pollinator’s memory of reward. Science 339(6124), 1202–1204 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 24.

    Couvillon, M. J. et al. Caffeinated forage tricks honeybees into increasing foraging and recruitment behaviors. Curr. Biol. 25, 2815–2818 (2015).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Arnold, S. E. et al. Bumble bees show an induced preference for flowers when primed with caffeinated nectar and a target floral odor. Curr. Biol. 31, 1–5 (2021).

    Article 

    Google Scholar 

  • 26.

    Gardener, M. C. & Gillman, M. P. Analyzing variability in nectar amino acids: Composition is less variable than concentration. J. Chem. Ecol. 27(12), 2545–2558 (2001).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Power, E. F., Stabler, D., Borland, A. M., Barnes, J. & Wright, G. A. Analysis of nectar from low-volume flowers: A comparison of collection methods for free amino acids. Methods Ecol. Evol. 9, 734–743 (2018).

    Article 

    Google Scholar 

  • 28.

    Terrab, A. et al. Analysis of amino acids in nectar from Silene colorata Poiret (Caryophyllaceae). Bot. J. Linn. Soc. 155, 49–56 (2007).

    Article 

    Google Scholar 

  • 29.

    Taha, E. K. A., Al-Kahtani, S. & Taha, R. Protein content and amino acids composition of bee-pollens from major floral sources in Al-Ahsa, eastern Saudi Arabia. Saudi J. Biol. Sci. 26, 232–237 (2019).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Müller, U. Inhibition of nitric oxide synthase impairs a distinct form of long-term memory in the honeybee, Apis mellifera. Neuron 16, 541–549 (1996).

    Article 

    Google Scholar 

  • 31.

    Müller, U. The nitric oxide system in insects. Prog. Neurobiol. 51, 363–381 (1997).

    Article 

    Google Scholar 

  • 32.

    Lopatina, N. G., Zachepilo, T. H., Kamyshev, N. G. & Chalisova, N. I. The influence of combinations of encoded amino acids on associative learning in the honeybee Apis mellifera L. J. Evol. Biochem. Physiol. 53(2), 123–128 (2017).

    CAS 
    Article 

    Google Scholar 

  • 33.

    Marchi, I. L., Palottini, F. & Farina, W. M. Combined secondary compounds naturally found in nectars enhance honeybee cognition and survival. J. Exp. Biol. 224(6), jeb239616 (2021).

    Article 

    Google Scholar 

  • 34.

    Müller, U. Prolonged activation of cAMP-dependent protein kinase during conditioning induces long-term memory in honeybees. Neuron 27(1), 159–168 (2000).

    Article 

    Google Scholar 

  • 35.

    Negri, P. et al. Nitric oxide participates at the first steps of Apis mellifera cellular immune activation in response to non-self recognition. Apidologie 44(5), 575–585 (2013).

    CAS 
    Article 

    Google Scholar 

  • 36.

    Lu, Y. H. et al. Identification of immune regulatory genes in Apis mellifera through caffeine treatment. Insects 11(8), 516 (2020).

    Article 

    Google Scholar 

  • 37.

    Delaplane, K. S. & Mayer, D. F. Crop Pollination by Bees (CAB International, 2000).

    Google Scholar 

  • 38.

    Cabrera, A. L. & Willink, A. Biogeografía de América Latina (Organización de Estados Americanos, 1973).

    Google Scholar 

  • 39.

    Gabai, A. et al. Protocol for Using Pollinators in Hybrid Seed Production: An Outline for Improving Pollinator Effectiveness. (International Seed Federation, 2018).

  • 40.

    Torretta, J. P., Medan, D., Roig Alsina, A. H. & Montaldo, N. H. Visitantes florales diurnos del girasol (Helianthus annuus L., Asterales: Asteraceae) en la Argentina. Rev. Soc. Entomol. Argent. 69(1–2), 17–32 (2010).

    Google Scholar 

  • 41.

    Sáez, A., Sabatino, M. & Aizen, M. A. Interactive effects of large-and small-scale sources of feral honeybees for sunflower in the Argentine Pampas. PLoS One 7(1), e30968 (2012).

    ADS 
    Article 

    Google Scholar 

  • 42.

    Farina, W. M., Díaz, P. C. & Arenas, A. Patent AR082846B1: Una Formulación que Promueve la Polinización Dirigida de Abejas Melíferas Hacia Cultivos de Girasol (Instituto Nacional de Propiedad Intelectual, 2017).

  • 43.

    Noetzel, D. M. Insect Pollination Results on Sunflower 108–112 (Department of Entomology North Dakota State University Fargo USA, 1968).

  • 44.

    Johannsmeier, M. F. & Mostert, J. N. Crop pollination. In Beekeeping in South Africa, 3rd ed. 235–250 (ed. Johannsmeier, M. F.) (Plant Protection Research Institute handbook 14. Agricultural Research Council of South Africa, 2001).

  • 45.

    R Development Core Team. R: A language and environment for statistical computing (R Foundation for Statistical Computing). https://www.R-project.org/ (2021).

  • 46.

    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9(2), 378–400 (2017).

    Article 

    Google Scholar 

  • 47.

    Crawley, M. J. The R Book (Wiley, 2013).

    MATH 

    Google Scholar 

  • 48.

    Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models. R Package Version 0.2.7. https://CRAN.R-project.org/package=DHARMa (2021).

  • 49.

    Chambers, J. M. & Hastie, T. J. Statistical Models in S (Chapman and Hall, 1992).

    MATH 

    Google Scholar 

  • 50.

    Lenth, R. emmeans: Estimated Marginal Means, aka Least-Squares Means. R Package Version 1.4.4., https://CRAN.R-project.org/package=emmeans (2021).


  • Source: Ecology - nature.com

    Q&A: Can the world change course on climate?

    The global loss of floristic uniqueness