Marlon, J. R. et al. Climate and human influences on global biomass burning over the past two millennia. Nat. Geosci. 1, 697–702 (2008).
Google Scholar
Pausas, J. G. & Keeley, J. E. A burning story: the role of fire in the history of life. BioScience 59, 593–601 (2009).
Google Scholar
Dennison, P. E., Brewer, S. C., Arnold, J. D. & Mortiz, M. A. Large wildfire trends in the western United States, 1984–2011. Geophys. Res. Lett. 41, 2928–2933 (2014).
Google Scholar
Abatzoglou, J. T. & Williams, A. P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl Acad. Sci. USA 113, 11770–11775 (2016).
Google Scholar
Westerling, A. L., Hidalgo, H. G., Cayan, D. R. & Swetnam, T. W. Warming and earlier spring increase western U.S. forest wildfire activity. Science 313, 940–943 (2006).
Google Scholar
Westerling, A. L. R. Increasing western US forest wildfire activity: Sensitivity to changes in the timing of spring. Phil. Trans. R. Soc. B Biol. Sci. 371, 1–10 (2016).
Schwartz, M. W. et al. Increasing elevation of fire in the Sierra Nevada and implications for forest change. Ecosphere 6, 1–10 (2015).
Google Scholar
Trujillo, E., Molotch, N. P., Goulden, M. L., Kelly, A. E. & Bales, R. C. Elevation-dependent influence of snow accumulation on forest greening. Nat. Geosci. 5, 705–709 (2012).
Google Scholar
Trouet, V., Taylor, A. H., Wahl, E. R., Skinner, C. N. & Stephens, S. L. Fire-climate interactions in the American West since 1400 CE. Geophys. Res. Lett. 37, 1–5 (2010).
Google Scholar
Kitchen, S. G. Climate and human influences on historical fire regimes (AD 1400–1900) in the eastern Great Basin (USA). Holocene 26, 397–407 (2016).
Google Scholar
Klimaszewski-Patterson, A., Weisberg, P. J., Mensing, S. A. & Scheller, R. M. Using paleolandscape modeling to investigate the impact of native American–set fires on pre-Columbian forests in the Southern Sierra Nevada, California, USA. Ann. Am. Assoc. Geographers 108, 1635–1654 (2018).
Taylor, A. H., Trouet, V., Skinner, C. N. & Stephens, S. Socioecological transitions trigger fire regime shifts and modulate fire-climate interactions in the Sierra Nevada, USA, 1600-2015 CE. Proc. Natl Acad. Sci. USA 113, 13684–13689 (2016).
Google Scholar
Ryan, K. C., Knapp, E. E. & Varner, J. M. Prescribed fire in North American forests and woodlands: history, current practice, and challenges. Front. Ecol. Environ. 11, e15–e24 (2013).
Herring, E. M., Anderson, R. S. & San Miguel, G. L. Fire, vegetation, and Ancestral Puebloans: a sediment record from Prater Canyon in Mesa Verde National Park, Colorado, USA. Holocene 24, 853–863 (2014).
Google Scholar
Liebmann, M. J. et al. Native American depopulation, reforestation, and fire regimes in the Southwest United States, 1492-1900 CE. Proc. Natl Acad. Sci. USA 113, E696–E704 (2016).
Google Scholar
Swetnam, T. W. et al. Multiscale perspectives of fire, climate and humans in Western North America and the Jemez Mountains, USA. Phil. Trans. R. Soc. B Biol. Sci. 371, (2016).
Levis, C. et al. Persistent effects of pre-Columbian plant domestication on Amazonian forest composition. Science 358, 925–931 (2017).
Google Scholar
Maezumi, S. Y. et al. The legacy of 4,500 years of polyculture agroforestry in the eastern Amazon. Nat. Plants 4, 540–547 (2018).
Google Scholar
Vale, T. R. The Pre-European landscape of the United States: Pristine or Humanized? in Fire, Native Peoples, and the Natural Landscape 1–39 (Island Press, 2002).
Lightfoot, K. G. & Lopez, V. The study of indigenous management practices in California: an introduction. California Archaeol. 5, 209–219 (2013).
Google Scholar
Oswald, W. W. et al. Conservation implications of limited Native American impacts in pre-contact New England. Nat. Sustain. 3, 241–246 (2020).
Google Scholar
Vachula, R. S., Russell, J. M. & Huang, Y. Climate exceeded human management as the dominant control of fire at the regional scale in California’s Sierra Nevada. Environ. Res. Lett. 14, 104011 (2019).
Google Scholar
Baker, W. L. Indians and Fire in the Rocky Mountains: The Wilderness Hypothesis Renewed. in Fire, Native Peoples, and the Natural Landscape 41–76 (2002).
Kimmerer, R. W. & Lake, F. K. Maintaining the Mosaic: the role of indigenous burning in land management. J. Forestry 99, 36–41 (2001).
Power, M. J. et al. Human fire legacies on ecological landscapes. Front. Earth Sci. 6, 1–6 (2018).
Google Scholar
Keeley, J. E. Native American impacts on fire regimes of the California coastal ranges. J. Biogeogr. 29, 303–320 (2002).
Google Scholar
Lightfoot, K. G., Parrish, O., Panich, L. M. & Schneider, T. D. California Indians and Their Environment: An Introduction (Univ. California Press, 2009).
Ryan, K. C., Jones, A. T., Koerner, C. L. & Lee, K. M. Wildland Fire in Ecosystems: Effects of Fire on Cultural Resources and Archaeology. Vol. 3., 224. Rocky Mountain Research Station General Technical Report RMRS-GTR-42 (US Department of Agriculture, Forest Service, 2012).
Roos, C. I., Zedeño, M. N., Hollenback, K. L. & Erlick, M. M. H. Indigenous impacts on North American Great Plains fire regimes of the past millennium. Proc. Natl Acad. Sci. USA 115, 8143–8148 (2018).
Google Scholar
Thomas, D. H. The 1981 Alta Toquima Village project: A Preliminary Report. Desert Research Institute Social Sciences and Humanities Publications Technical Report 27, 1–202 (Desert Research Institute Social Sciences and Humanities Publications, 1982).
Benedict, J. B. Footprints in the snow: high-altitude cultural ecology of the Colorado Front Range, USA. Arctic Alpine Res. 24, 1–16 (1992).
Google Scholar
Stevens, N. E. Changes in prehistoric land use in the Alpine Sierra Nevada: a regional exploration using temperature-adjusted obsidian hydration rates. J. California Great Basin Anthropol. 25, 187–205 (2005).
Klimaszewski-Patterson, A. & Mensing, S. Paleoecological and paleolandscape modeling support for pre-Columbian burning by Native Americans in the Golden Trout Wilderness Area, California, USA. Landscape Ecol. https://doi.org/10.1007/s10980-020-01081-x (2020).
Swetnam, T. W., Allen, C. D. & Betancourt, J. L. Applied historical ecology: using the past to manage for the future. Ecol. Appl. 9, 1189–1206 (1999).
Google Scholar
Roos, C. I., Williamson, G. J. & Bowman, D. M. Is anthropogenic pyrodiversity invisible in paleofire records? Fire 2, 42 (2019).
Google Scholar
Marlon, J. R. et al. Global biomass burning: a synthesis and review of Holocene paleofire records and their controls. Quat. Sci. Rev. 65, 5–25 (2013).
Google Scholar
Bowman, D. M. et al. The human dimension of fire regimes on Earth. J. Biogeogr. 38, 2223–2236 (2011).
Google Scholar
Adolf, C. et al. The sedimentary and remote-sensing reflection of biomass burning in Europe. Global Ecol. Biogeogr. 27, 199–212 (2018).
Google Scholar
Vachula, R. S. A meta-analytical approach to understanding the charcoal source area problem. Palaeogeogr. Palaeoclimatol. Palaeoecol. 562, 110111 https://doi.org/10.1016/j.palaeo.2020.110111 (2021).
Munoz, S. E., Gajewski, K. & Peros, M. C. Synchronous environmental and cultural change in the prehistory of the northeastern United States. Proc. Natl Acad. Sci. USA 107, 22008–22013 (2010).
Google Scholar
Peros, M. C., Munoz, S. E., Gajewski, K. & Viau, A. E. Prehistoric demography of North America inferred from radiocarbon data. J. Archaeol. Sci. 37, 656–664 (2010).
Google Scholar
Brown, P. M., Heyerdahl, E. K., Kitchen, S. G. & Weber, M. H. Climate effects on historical fires (1630-1900) in Utah. Int. J. Wildland Fire 17, 28–39 (2008).
Google Scholar
Li, J. et al. Interdecadal modulation of El Niño amplitude during the past millennium. Nat. Clim. Change 1, 114–118 (2011).
Google Scholar
Gedalof, Z. & Peterson, D. L. & Mantua, N. J. Atmospheric, climatic, and ecological controls on extreme wildfire years in the Northwestern United States. Ecol. Appl. 15, 154–174 (2005).
Morgan, P., Hardy, C. C., Swetnam, T. W., Rollins, M. G. & Long, D. G. Mapping fire regimes across time and space: Understanding coarse and fine-scale fire patterns. Int. J. Wildland Fire 10, 329–342 (2001).
Google Scholar
Marchetti, D. W., Harris, M. S., Bailey, C. M., Cerling, T. E. & Bergman, S. Timing of glaciation and last glacial maximum paleoclimate estimates from the Fish Lake Plateau, Utah. Quat. Res. 75, 183–195 (2011).
Google Scholar
Kemperman, J. A. & Barnes, B. V. Clone size in American aspens. Can. J. Botany 54, 2603–2607 (1976).
Google Scholar
Mitton, J. B. & Grant, M. C. Genetic variation and the natural history of quaking Aspen. BioScience 46, 25–31 (1996).
Google Scholar
Wood, S. N. Generalized Additive Models: an Introduction with R (Chapman and Hall, 2006).
Hastie, T. & Tibshirani, R. Generalized additive models. Stat. Sci. 1, 297–318 (1992).
Madsen, D. B. & Simms, S. R. The Fremont complex: a behavioral perspective. J. World Prehistory 12, 255–336 (1998).
Google Scholar
Massimino, J. & Metcalfe, D. New form for the formative. Utah Archaeol. 12, 1–16 (1999).
Coltrain, J. B. & Leavitt, S. W. Climate and diet in Fremont prehistory: economic variability and abandonment of maize agriculture in the Great Salt Lake Basin. Am. Antiquity 67, 453–485 (2002).
Google Scholar
Magargal, K. E., Parker, A. K., Vernon, K. B., Rath, W. & Codding, B. F. The ecology of population dispersal: modeling alternative basin-plateau foraging strategies to explain the Numic expansion. Am. J. Hum. Biol. 29, 1–14 (2017).
Thomson, M. J., Balkovič, J., Krisztin, T. & MacDonald, G. M. Simulated impact of paleoclimate change on Fremont Native American maize farming in Utah, 850–1449 CE, using crop and climate models. Quat. Int. 507, 95–107 (2019).
Google Scholar
Finley, J. B., Robinson, E., Derose, R. J. & Hora, E. Multidecadal climate variability and the florescence of Fremont societies in Eastern Utah. American Antiquity 85, 93–112 (2020).
Google Scholar
Janetski, J. C. Archaeology and Native American history at Fish Lake, Central Utah. vol. 16 (Museum of Peoples and Cultures, Brigham Young University, 2010).
Fowler, C. S. in Handbook of North American Indians (eds. Sturtevant, W. C. & D’Azevedo, W. L.) vol. 11, 64–97 (Smithsonian Institution, 1986).
Sullivan, A. P. & Mink, P. B. Theoretical and socioecological consequences of fire foodways. Am. Antiquity 83, 619–638 (2018).
Google Scholar
Mann, M. E. et al. Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly. Science 326, 1256–1260 (2009).
Google Scholar
Woodhouse, C. A., Meko, D. M., MacDonald, G. M., Stahle, D. W. & Cook, E. R. A 1,200-year perspective of 21st century drought in southwestern North America. Proc. Natl Acad. Sci. USA 107, 21283–21288 (2010).
Google Scholar
Meko, D. M. et al. Medieval drought in the upper Colorado River Basin. Geophys. Res. Lett. 34, 1–5 (2007).
Google Scholar
Salzer, M. W. & Kipfmueller, K. F. Reconstructed temperature and precipitation on a millennial timescale from tree-rings in the southern Colorado Plateau, U.S.A. Clim. Change 70, 465–487 (2005).
Google Scholar
Knight, T. A., Meko, D. M. & Baisan, C. H. A bimillennial-length tree-ring reconstruction of precipitation for the Tavaputs Plateau, Northeastern Utah. Quat. Res. 73, 107–117 (2010).
Google Scholar
Margolis, E. Q. & Swetnam, T. W. Historical fire-climate relationships of upper elevation fire regimes in the south-western United States. Int. J. Wildland Fire 22, 588–598 (2013).
Google Scholar
Calder, W. J., Parker, D., Stopka, C. J., Jiménez-Moreno, G. & Shuman, B. N. Medieval warming initiated exceptionally large wildfire outbreaks in the Rocky Mountains. Proc. Natl Acad. Sci. USA 112, 13261–13266 (2015).
Google Scholar
Bliege, R. B., Codding, B. F., Kauhanen, P. G. & Bird, D. W. Aboriginal hunting buffers climate-driven fire-size variability in Australia’s spinifex grasslands. Proc. Natl Acad. Sci. USA 109, 10287–10292 (2012).
Google Scholar
Parisien, M. A. et al. The spatially varying influence of humans on fire probability in North America. Environ. Res. Lett. 11, 075005 (2016).
Google Scholar
Codding, B. F. et al. Socioecological dynamics structuring the spread of farming in the North American Basin-Plateau Region. Environ. Archaeol. (in review).
Robinson, E., Nicholson, C. & Kelly, R. L. The importance of spatial data to open-access national archaeological databases and the development of paleodemography research. Adv. Archaeol. Pract. 7, 395–408 (2019).
Google Scholar
Marlon, J. R. et al. Long-term perspective on wildfires in the western USA. Proc. Natl Acad. Sci. USA 109, 535–543 (2012).
Google Scholar
Kent McAdoo, J., Schultz, B. W. & Swanson, S. R. Aboriginal precedent for active management of sagebrush-perennial grass communities in the Great Basin. Rangeland Ecol. Manag. 66, 241–253 (2013).
Google Scholar
Heyerdahl, E. K., Brown, P. M., Kitchen, S. G. & Weber, M. H. Multicentury Fire and Forest Histories at 19 sites in Utah and Eastern Nevada. Rocky Mountain Research Station General Technical Report RMRS-GTR-261WWW, 192 (US Department of Agriculture, Forest Service, 2011).
Charles, K. Long-term Vegetation Change on Utah’s Fishlake National Forest: A Study in Repeat Photography (Utah State Univ., 2003).
USDA Forest Service. Fishlake National Forest (N.F.), Salina Planning Unit: Environmental Impact Statement. 1–125 (USDA Forest Service, 1976).
Morris, J. L., Brunelle, A., Munson, A. S., Spencer, J. & Power, M. J. Holocene vegetation and fire reconstructions from the Aquarius Plateau, Utah, USA. Quat. Int. 310, 111–123 (2013).
Google Scholar
MTBS Data Access: Fire Level Geospatial Data. (2020, November – last revised). MTBS Project (USDA Forest Service/U.S. Geological Survey). Available online: http://mtbs.gov/direct-download [2020, December 15].
Kitzberger, T., Falk, D. A., Westerling, A. L. & Swetnam, T. W. Direct and indirect climate controls predict heterogeneous early-mid 21st century wildfire burned area across western and boreal North America. PLoS ONE 12, e0188486 (2017).
Google Scholar
Dean, W. E. Jr. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparision with other methods. J. Sediment. Petrol. 44, 242–248 (1974).
Google Scholar
Reimer, P. J. et al. Intcal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal Bp. Radiocarbon 55, 1869–1887 (2013).
Google Scholar
Blaauw, M. & Christen, J. A. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal. 6, 457–474 (2011).
Google Scholar
Higuera, P. E., Brubaker, L. B., Anderson, P. M., Hu, F. S. & Brown, T. A. Vegetation mediated the impacts of postglacial climate change on fire regimes in the south-central Brooks Range, Alaska. Ecol. Monographs 79, 201–219 (2009).
Google Scholar
Crema, E. R., Bevan, A. & Shennan, S. Spatio-temporal approaches to archaeological radiocarbon dates. J. Archaeol. Sci. 87, 1–9 (2017).
Google Scholar
Kelly, R. L., Surovell, T. A., Shuman, B. N. & Smith, G. M. A continuous climatic impact on Holocene human population in the Rocky Mountains. Proc. Natl Ac. Sci. USA 110, 443–447 (2013).
Google Scholar
Shennan, S. et al. Regional population collapse followed initial agriculture booms in mid-Holocene Europe. Nat Commun. 4, 31–34 (2013).
Google Scholar
Bevan, A. & Crema, E. rcarbon v1. 2.0: Methods for calibrating and analysing radiocarbon dates, https://cran.r-project.org/web/packages/rcarbon/index.html (2018).
Contreras, D. A. & Meadows, J. Summed radiocarbon calibrations as a population proxy: A critical evaluation using a realistic simulation approach. J. Archaeol. Sci. 52, 591–608 (2014).
Google Scholar
Wood, S. N. Package ‘mgvc,’ https://cran.r-project.org/web/packages/mgcv/mgcv.pdf (2017).
Source: Ecology - nature.com