in

Legacies of Indigenous land use shaped past wildfire regimes in the Basin-Plateau Region, USA

[adace-ad id="91168"]
  • 1.

    Marlon, J. R. et al. Climate and human influences on global biomass burning over the past two millennia. Nat. Geosci. 1, 697–702 (2008).

    CAS 
    Article 

    Google Scholar 

  • 2.

    Pausas, J. G. & Keeley, J. E. A burning story: the role of fire in the history of life. BioScience 59, 593–601 (2009).

    Article 

    Google Scholar 

  • 3.

    Dennison, P. E., Brewer, S. C., Arnold, J. D. & Mortiz, M. A. Large wildfire trends in the western United States, 1984–2011. Geophys. Res. Lett. 41, 2928–2933 (2014).

    Article 

    Google Scholar 

  • 4.

    Abatzoglou, J. T. & Williams, A. P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl Acad. Sci. USA 113, 11770–11775 (2016).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Westerling, A. L., Hidalgo, H. G., Cayan, D. R. & Swetnam, T. W. Warming and earlier spring increase western U.S. forest wildfire activity. Science 313, 940–943 (2006).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Westerling, A. L. R. Increasing western US forest wildfire activity: Sensitivity to changes in the timing of spring. Phil. Trans. R. Soc. B Biol. Sci. 371, 1–10 (2016).

    Google Scholar 

  • 7.

    Schwartz, M. W. et al. Increasing elevation of fire in the Sierra Nevada and implications for forest change. Ecosphere 6, 1–10 (2015).

    Article 

    Google Scholar 

  • 8.

    Trujillo, E., Molotch, N. P., Goulden, M. L., Kelly, A. E. & Bales, R. C. Elevation-dependent influence of snow accumulation on forest greening. Nat. Geosci. 5, 705–709 (2012).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Trouet, V., Taylor, A. H., Wahl, E. R., Skinner, C. N. & Stephens, S. L. Fire-climate interactions in the American West since 1400 CE. Geophys. Res. Lett. 37, 1–5 (2010).

    Article 

    Google Scholar 

  • 10.

    Kitchen, S. G. Climate and human influences on historical fire regimes (AD 1400–1900) in the eastern Great Basin (USA). Holocene 26, 397–407 (2016).

    Article 

    Google Scholar 

  • 11.

    Klimaszewski-Patterson, A., Weisberg, P. J., Mensing, S. A. & Scheller, R. M. Using paleolandscape modeling to investigate the impact of native American–set fires on pre-Columbian forests in the Southern Sierra Nevada, California, USA. Ann. Am. Assoc. Geographers 108, 1635–1654 (2018).

    Google Scholar 

  • 12.

    Taylor, A. H., Trouet, V., Skinner, C. N. & Stephens, S. Socioecological transitions trigger fire regime shifts and modulate fire-climate interactions in the Sierra Nevada, USA, 1600-2015 CE. Proc. Natl Acad. Sci. USA 113, 13684–13689 (2016).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Ryan, K. C., Knapp, E. E. & Varner, J. M. Prescribed fire in North American forests and woodlands: history, current practice, and challenges. Front. Ecol. Environ. 11, e15–e24 (2013).

  • 14.

    Herring, E. M., Anderson, R. S. & San Miguel, G. L. Fire, vegetation, and Ancestral Puebloans: a sediment record from Prater Canyon in Mesa Verde National Park, Colorado, USA. Holocene 24, 853–863 (2014).

    Article 

    Google Scholar 

  • 15.

    Liebmann, M. J. et al. Native American depopulation, reforestation, and fire regimes in the Southwest United States, 1492-1900 CE. Proc. Natl Acad. Sci. USA 113, E696–E704 (2016).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Swetnam, T. W. et al. Multiscale perspectives of fire, climate and humans in Western North America and the Jemez Mountains, USA. Phil. Trans. R. Soc. B Biol. Sci. 371, (2016).

  • 17.

    Levis, C. et al. Persistent effects of pre-Columbian plant domestication on Amazonian forest composition. Science 358, 925–931 (2017).

    Article 
    CAS 

    Google Scholar 

  • 18.

    Maezumi, S. Y. et al. The legacy of 4,500 years of polyculture agroforestry in the eastern Amazon. Nat. Plants 4, 540–547 (2018).

    Article 

    Google Scholar 

  • 19.

    Vale, T. R. The Pre-European landscape of the United States: Pristine or Humanized? in Fire, Native Peoples, and the Natural Landscape 1–39 (Island Press, 2002).

  • 20.

    Lightfoot, K. G. & Lopez, V. The study of indigenous management practices in California: an introduction. California Archaeol. 5, 209–219 (2013).

    Article 

    Google Scholar 

  • 21.

    Oswald, W. W. et al. Conservation implications of limited Native American impacts in pre-contact New England. Nat. Sustain. 3, 241–246 (2020).

    Article 

    Google Scholar 

  • 22.

    Vachula, R. S., Russell, J. M. & Huang, Y. Climate exceeded human management as the dominant control of fire at the regional scale in California’s Sierra Nevada. Environ. Res. Lett. 14, 104011 (2019).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Baker, W. L. Indians and Fire in the Rocky Mountains: The Wilderness Hypothesis Renewed. in Fire, Native Peoples, and the Natural Landscape 41–76 (2002).

  • 24.

    Kimmerer, R. W. & Lake, F. K. Maintaining the Mosaic: the role of indigenous burning in land management. J. Forestry 99, 36–41 (2001).

    Google Scholar 

  • 25.

    Power, M. J. et al. Human fire legacies on ecological landscapes. Front. Earth Sci. 6, 1–6 (2018).

    Article 

    Google Scholar 

  • 26.

    Keeley, J. E. Native American impacts on fire regimes of the California coastal ranges. J. Biogeogr. 29, 303–320 (2002).

    Article 

    Google Scholar 

  • 27.

    Lightfoot, K. G., Parrish, O., Panich, L. M. & Schneider, T. D. California Indians and Their Environment: An Introduction (Univ. California Press, 2009).

  • 28.

    Ryan, K. C., Jones, A. T., Koerner, C. L. & Lee, K. M. Wildland Fire in Ecosystems: Effects of Fire on Cultural Resources and Archaeology. Vol. 3., 224. Rocky Mountain Research Station General Technical Report RMRS-GTR-42 (US Department of Agriculture, Forest Service, 2012).

  • 29.

    Roos, C. I., Zedeño, M. N., Hollenback, K. L. & Erlick, M. M. H. Indigenous impacts on North American Great Plains fire regimes of the past millennium. Proc. Natl Acad. Sci. USA 115, 8143–8148 (2018).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Thomas, D. H. The 1981 Alta Toquima Village project: A Preliminary Report. Desert Research Institute Social Sciences and Humanities Publications Technical Report 27, 1–202 (Desert Research Institute Social Sciences and Humanities Publications, 1982).

  • 31.

    Benedict, J. B. Footprints in the snow: high-altitude cultural ecology of the Colorado Front Range, USA. Arctic Alpine Res. 24, 1–16 (1992).

    Article 

    Google Scholar 

  • 32.

    Stevens, N. E. Changes in prehistoric land use in the Alpine Sierra Nevada: a regional exploration using temperature-adjusted obsidian hydration rates. J. California Great Basin Anthropol. 25, 187–205 (2005).

    Google Scholar 

  • 33.

    Klimaszewski-Patterson, A. & Mensing, S. Paleoecological and paleolandscape modeling support for pre-Columbian burning by Native Americans in the Golden Trout Wilderness Area, California, USA. Landscape Ecol. https://doi.org/10.1007/s10980-020-01081-x (2020).

  • 34.

    Swetnam, T. W., Allen, C. D. & Betancourt, J. L. Applied historical ecology: using the past to manage for the future. Ecol. Appl. 9, 1189–1206 (1999).

    Article 

    Google Scholar 

  • 35.

    Roos, C. I., Williamson, G. J. & Bowman, D. M. Is anthropogenic pyrodiversity invisible in paleofire records? Fire 2, 42 (2019).

    Article 

    Google Scholar 

  • 36.

    Marlon, J. R. et al. Global biomass burning: a synthesis and review of Holocene paleofire records and their controls. Quat. Sci. Rev. 65, 5–25 (2013).

    Article 

    Google Scholar 

  • 37.

    Bowman, D. M. et al. The human dimension of fire regimes on Earth. J. Biogeogr. 38, 2223–2236 (2011).

    Article 

    Google Scholar 

  • 38.

    Adolf, C. et al. The sedimentary and remote-sensing reflection of biomass burning in Europe. Global Ecol. Biogeogr. 27, 199–212 (2018).

    Article 

    Google Scholar 

  • 39.

    Vachula, R. S. A meta-analytical approach to understanding the charcoal source area problem. Palaeogeogr. Palaeoclimatol. Palaeoecol. 562, 110111 https://doi.org/10.1016/j.palaeo.2020.110111 (2021).

  • 40.

    Munoz, S. E., Gajewski, K. & Peros, M. C. Synchronous environmental and cultural change in the prehistory of the northeastern United States. Proc. Natl Acad. Sci. USA 107, 22008–22013 (2010).

    CAS 
    Article 

    Google Scholar 

  • 41.

    Peros, M. C., Munoz, S. E., Gajewski, K. & Viau, A. E. Prehistoric demography of North America inferred from radiocarbon data. J. Archaeol. Sci. 37, 656–664 (2010).

    Article 

    Google Scholar 

  • 42.

    Brown, P. M., Heyerdahl, E. K., Kitchen, S. G. & Weber, M. H. Climate effects on historical fires (1630-1900) in Utah. Int. J. Wildland Fire 17, 28–39 (2008).

    Article 

    Google Scholar 

  • 43.

    Li, J. et al. Interdecadal modulation of El Niño amplitude during the past millennium. Nat. Clim. Change 1, 114–118 (2011).

    CAS 
    Article 

    Google Scholar 

  • 44.

    Gedalof, Z. & Peterson, D. L. & Mantua, N. J. Atmospheric, climatic, and ecological controls on extreme wildfire years in the Northwestern United States. Ecol. Appl. 15, 154–174 (2005).

  • 45.

    Morgan, P., Hardy, C. C., Swetnam, T. W., Rollins, M. G. & Long, D. G. Mapping fire regimes across time and space: Understanding coarse and fine-scale fire patterns. Int. J. Wildland Fire 10, 329–342 (2001).

    Article 

    Google Scholar 

  • 46.

    Marchetti, D. W., Harris, M. S., Bailey, C. M., Cerling, T. E. & Bergman, S. Timing of glaciation and last glacial maximum paleoclimate estimates from the Fish Lake Plateau, Utah. Quat. Res. 75, 183–195 (2011).

    CAS 
    Article 

    Google Scholar 

  • 47.

    Kemperman, J. A. & Barnes, B. V. Clone size in American aspens. Can. J. Botany 54, 2603–2607 (1976).

    Article 

    Google Scholar 

  • 48.

    Mitton, J. B. & Grant, M. C. Genetic variation and the natural history of quaking Aspen. BioScience 46, 25–31 (1996).

    Article 

    Google Scholar 

  • 49.

    Wood, S. N. Generalized Additive Models: an Introduction with R (Chapman and Hall, 2006).

  • 50.

    Hastie, T. & Tibshirani, R. Generalized additive models. Stat. Sci. 1, 297–318 (1992).

    Google Scholar 

  • 51.

    Madsen, D. B. & Simms, S. R. The Fremont complex: a behavioral perspective. J. World Prehistory 12, 255–336 (1998).

    Article 

    Google Scholar 

  • 52.

    Massimino, J. & Metcalfe, D. New form for the formative. Utah Archaeol. 12, 1–16 (1999).

    Google Scholar 

  • 53.

    Coltrain, J. B. & Leavitt, S. W. Climate and diet in Fremont prehistory: economic variability and abandonment of maize agriculture in the Great Salt Lake Basin. Am. Antiquity 67, 453–485 (2002).

    Article 

    Google Scholar 

  • 54.

    Magargal, K. E., Parker, A. K., Vernon, K. B., Rath, W. & Codding, B. F. The ecology of population dispersal: modeling alternative basin-plateau foraging strategies to explain the Numic expansion. Am. J. Hum. Biol. 29, 1–14 (2017).

    Google Scholar 

  • 55.

    Thomson, M. J., Balkovič, J., Krisztin, T. & MacDonald, G. M. Simulated impact of paleoclimate change on Fremont Native American maize farming in Utah, 850–1449 CE, using crop and climate models. Quat. Int. 507, 95–107 (2019).

    Article 

    Google Scholar 

  • 56.

    Finley, J. B., Robinson, E., Derose, R. J. & Hora, E. Multidecadal climate variability and the florescence of Fremont societies in Eastern Utah. American Antiquity 85, 93–112 (2020).

    Article 

    Google Scholar 

  • 57.

    Janetski, J. C. Archaeology and Native American history at Fish Lake, Central Utah. vol. 16 (Museum of Peoples and Cultures, Brigham Young University, 2010).

  • 58.

    Fowler, C. S. in Handbook of North American Indians (eds. Sturtevant, W. C. & D’Azevedo, W. L.) vol. 11, 64–97 (Smithsonian Institution, 1986).

  • 59.

    Sullivan, A. P. & Mink, P. B. Theoretical and socioecological consequences of fire foodways. Am. Antiquity 83, 619–638 (2018).

    Article 

    Google Scholar 

  • 60.

    Mann, M. E. et al. Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly. Science 326, 1256–1260 (2009).

    CAS 
    Article 

    Google Scholar 

  • 61.

    Woodhouse, C. A., Meko, D. M., MacDonald, G. M., Stahle, D. W. & Cook, E. R. A 1,200-year perspective of 21st century drought in southwestern North America. Proc. Natl Acad. Sci. USA 107, 21283–21288 (2010).

    CAS 
    Article 

    Google Scholar 

  • 62.

    Meko, D. M. et al. Medieval drought in the upper Colorado River Basin. Geophys. Res. Lett. 34, 1–5 (2007).

    Article 

    Google Scholar 

  • 63.

    Salzer, M. W. & Kipfmueller, K. F. Reconstructed temperature and precipitation on a millennial timescale from tree-rings in the southern Colorado Plateau, U.S.A. Clim. Change 70, 465–487 (2005).

    CAS 
    Article 

    Google Scholar 

  • 64.

    Knight, T. A., Meko, D. M. & Baisan, C. H. A bimillennial-length tree-ring reconstruction of precipitation for the Tavaputs Plateau, Northeastern Utah. Quat. Res. 73, 107–117 (2010).

    Article 

    Google Scholar 

  • 65.

    Margolis, E. Q. & Swetnam, T. W. Historical fire-climate relationships of upper elevation fire regimes in the south-western United States. Int. J. Wildland Fire 22, 588–598 (2013).

    Article 

    Google Scholar 

  • 66.

    Calder, W. J., Parker, D., Stopka, C. J., Jiménez-Moreno, G. & Shuman, B. N. Medieval warming initiated exceptionally large wildfire outbreaks in the Rocky Mountains. Proc. Natl Acad. Sci. USA 112, 13261–13266 (2015).

    CAS 
    Article 

    Google Scholar 

  • 67.

    Bliege, R. B., Codding, B. F., Kauhanen, P. G. & Bird, D. W. Aboriginal hunting buffers climate-driven fire-size variability in Australia’s spinifex grasslands. Proc. Natl Acad. Sci. USA 109, 10287–10292 (2012).

    Article 

    Google Scholar 

  • 68.

    Parisien, M. A. et al. The spatially varying influence of humans on fire probability in North America. Environ. Res. Lett. 11, 075005 (2016).

    Article 

    Google Scholar 

  • 69.

    Codding, B. F. et al. Socioecological dynamics structuring the spread of farming in the North American Basin-Plateau Region. Environ. Archaeol. (in review).

  • 70.

    Robinson, E., Nicholson, C. & Kelly, R. L. The importance of spatial data to open-access national archaeological databases and the development of paleodemography research. Adv. Archaeol. Pract. 7, 395–408 (2019).

    Article 

    Google Scholar 

  • 71.

    Marlon, J. R. et al. Long-term perspective on wildfires in the western USA. Proc. Natl Acad. Sci. USA 109, 535–543 (2012).

    Article 

    Google Scholar 

  • 72.

    Kent McAdoo, J., Schultz, B. W. & Swanson, S. R. Aboriginal precedent for active management of sagebrush-perennial grass communities in the Great Basin. Rangeland Ecol. Manag. 66, 241–253 (2013).

    Article 

    Google Scholar 

  • 73.

    Heyerdahl, E. K., Brown, P. M., Kitchen, S. G. & Weber, M. H. Multicentury Fire and Forest Histories at 19 sites in Utah and Eastern Nevada. Rocky Mountain Research Station General Technical Report RMRS-GTR-261WWW, 192 (US Department of Agriculture, Forest Service, 2011).

  • 74.

    Charles, K. Long-term Vegetation Change on Utah’s Fishlake National Forest: A Study in Repeat Photography (Utah State Univ., 2003).

  • 75.

    USDA Forest Service. Fishlake National Forest (N.F.), Salina Planning Unit: Environmental Impact Statement. 1–125 (USDA Forest Service, 1976).

  • 76.

    Morris, J. L., Brunelle, A., Munson, A. S., Spencer, J. & Power, M. J. Holocene vegetation and fire reconstructions from the Aquarius Plateau, Utah, USA. Quat. Int. 310, 111–123 (2013).

    Article 

    Google Scholar 

  • 77.

    MTBS Data Access: Fire Level Geospatial Data. (2020, November – last revised). MTBS Project (USDA Forest Service/U.S. Geological Survey). Available online: http://mtbs.gov/direct-download [2020, December 15].

  • 78.

    Kitzberger, T., Falk, D. A., Westerling, A. L. & Swetnam, T. W. Direct and indirect climate controls predict heterogeneous early-mid 21st century wildfire burned area across western and boreal North America. PLoS ONE 12, e0188486 (2017).

    Article 
    CAS 

    Google Scholar 

  • 79.

    Dean, W. E. Jr. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparision with other methods. J. Sediment. Petrol. 44, 242–248 (1974).

    CAS 

    Google Scholar 

  • 80.

    Reimer, P. J. et al. Intcal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal Bp. Radiocarbon 55, 1869–1887 (2013).

    CAS 
    Article 

    Google Scholar 

  • 81.

    Blaauw, M. & Christen, J. A. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal. 6, 457–474 (2011).

    Article 

    Google Scholar 

  • 82.

    Higuera, P. E., Brubaker, L. B., Anderson, P. M., Hu, F. S. & Brown, T. A. Vegetation mediated the impacts of postglacial climate change on fire regimes in the south-central Brooks Range, Alaska. Ecol. Monographs 79, 201–219 (2009).

    Article 

    Google Scholar 

  • 83.

    Crema, E. R., Bevan, A. & Shennan, S. Spatio-temporal approaches to archaeological radiocarbon dates. J. Archaeol. Sci. 87, 1–9 (2017).

    CAS 
    Article 

    Google Scholar 

  • 84.

    Kelly, R. L., Surovell, T. A., Shuman, B. N. & Smith, G. M. A continuous climatic impact on Holocene human population in the Rocky Mountains. Proc. Natl Ac. Sci. USA 110, 443–447 (2013).

    CAS 
    Article 

    Google Scholar 

  • 85.

    Shennan, S. et al. Regional population collapse followed initial agriculture booms in mid-Holocene Europe. Nat Commun. 4, 31–34 (2013).

    Article 
    CAS 

    Google Scholar 

  • 86.

    Bevan, A. & Crema, E. rcarbon v1. 2.0: Methods for calibrating and analysing radiocarbon dates, https://cran.r-project.org/web/packages/rcarbon/index.html (2018).

  • 87.

    Contreras, D. A. & Meadows, J. Summed radiocarbon calibrations as a population proxy: A critical evaluation using a realistic simulation approach. J. Archaeol. Sci. 52, 591–608 (2014).

    Article 

    Google Scholar 

  • 88.

    Wood, S. N. Packagemgvc,’ https://cran.r-project.org/web/packages/mgcv/mgcv.pdf (2017).


  • Source: Ecology - nature.com

    Negative emissions, positive economy

    Individual US diets show wide variation in water scarcity footprints