in

Legume-rhizobium specificity effect on nodulation, biomass production and partitioning of faba bean (Vicia faba L.)

  • 1.

    Giller, K. E. et al. N2 Africa: Putting nitrogen fixation to work for smallholder farmers in Africa. In Agrological Intensification of Agricultural Systems in the African Highlands (eds Vanlauwe, B. et al.) 156–174 (Routledge, London, 2013).

    Google Scholar 

  • 2.

    Goss, M. J., de Varennes, A., Smith, P. S. & Ferguson, J. A. Nitrogen fixation by soybean grown with different levels of mineral nitrogen and fertilizer replacement value for a following crop. Can. J. So. Sci. 82, 139–145 (2002).

    Article  Google Scholar 

  • 3.

    Abdul-Aziz, A.L. Contribution of rhizobium and phosphorus fertilizer to biological nitrogen fixation and grain yield of soybean in the Tolon District. A Thesis Submitted to the Department of Crop and Soil Sciences, Faculty of Agriculture, Kwame Nkrumah University of Science and Technology, Kumasi, in partial fulfillment of the requirement of the degree of Master of Science in soil science (2013).

  • 4.

    Argaw, S. Evaluation of co-inoculation of Bradyrhizobium japonicum and phosphate solubilizing Pseudomonas spp. effect on soybean (Glycine max L. (Merri)) in Assossa area. J. Agric. Sci. Tech. 14, 213–224 (2012).

    CAS  Google Scholar 

  • 5.

    Keneni, G. et al. Phenotypic diversity for symbio-agronomic characters in Ethiopia chickpea (Cicer arietinum L.) germplasm accessions. Afr. J. Biotechnol. 11(63), 12634–12651 (2012).

    Google Scholar 

  • 6.

    Ouma, E. W., Asango, A. M., Maingi, J. & Njeru, M. Elucidating the potential of native rhizobial isolates to improve biological nitrogen fixation and growth of common bean and soybean in smallholder farming systems of Kenya. Int. J. Agron. 2016, 1–7 (2016).

    Article  CAS  Google Scholar 

  • 7.

    Stajković, O. et al. Improvement of common bean growth by co-inoculation with Rhizobium and plant growth-promoting bacteria. Rom. Biotech. Lett. 16, 5919–5926 (2011).

    Google Scholar 

  • 8.

    Chen, Y. X. et al. Faba bean (Vicia faba L.) nodulating rhizobia in Panxi, China, are diverse at species, plant growth promoting ability, and symbiosis related gene levels. Front. Microbiol. 9, 1–10 (2018).

    Article  Google Scholar 

  • 9.

    Saἲdi, S., Chebil, S., Gtari, M. & Mhamdi, R. Characterization of root-nodule bacteria isolated from vicia faba and selection of plant growth promoting isolates. World J. Microbiol. Biotechnol. 29, 1099–1106 (2013).

    Article  CAS  Google Scholar 

  • 10.

    Workalemahu, W. The effect of indigenous toot nodulating bacteria on nodulation and growth of faba bean (Vicia faba L.) in the low-input agricultural systems of Tigray highlands, northern Ethiopia. Momona Ethiop. J. Sci. 1(2), 30–43 (2009).

    Article  Google Scholar 

  • 11.

    Sánchez-Cañizares, C. et al. Genomic diversity in the endosymbiotic bacterium Rhizobium leguminosarum. Genes. 9(60), 1–26 (2018).

    Google Scholar 

  • 12.

    Laguerre, G., Louvrier, P., Allard, M. R. & Amarger, N. Compatibility of rhizobial genotypes within natural populations of Rhizobium leguminosarum biovar viciae for nodulation of host-legumes. Appl. Environ. Microbiol. 69(4), 2276–2283 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 13.

    Sachs, J. L., Kembel, S. W., Lau, A. M. & Simms, E. L. In situphylogenetic structure and diversity of wild Bradyrhizobium communities. Appl. Environ. Microbiol. 75, 4727–4735 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 14.

    Laguerre, G., Depret, G., Bourion, V. & Duc, G. Rhizobium leguminosarumbv. viciae genotypes interact with pea plants in developmental responses of nodules, roots and shoots. New Phytol. 176, 680–690 (2007).

    PubMed  Article  Google Scholar 

  • 15.

    McKenzie, R. H. et al. Response of peat or rhizobia inoculation and start nitrogen in Alberta. Can. J. Plant Sci. 81, 637–643 (2001).

    Article  Google Scholar 

  • 16.

    Siczek, A. & Lipiec, J. Impact of faba bean-seed rhizobial inoculation on microbial activity in the rhizosphere soil during growing season. Int. J. Mol. Sci. 17(784), 1–9 (2016).

    Google Scholar 

  • 17.

    Downie, J. A. The roles of extracellular proteins, polysaccharides and signals in the interactions of rhizobia with legume roots. FEMS Microbiol. Rev. 34, 150–170 (2010).

    CAS  PubMed  Article  Google Scholar 

  • 18.

    Fujita, H., Aoki, S. & Kawaguchi, M. Evolutionary dynamics of nitrogen fixation in the legume-rhizobia symbiosis. PLoS ONE 9, e93670 (2014).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 19.

    Beltayef, H. et al. Statement of biological nitrogen fixation in snap bean under Mediterranean semi-arid conditions. Bulgarian J. of Agri. Sci. 24(2), 244–251 (2018).

    Google Scholar 

  • 20.

    Pitkäjärvi, J. et al. Persistence, population dynamics and competitiveness for nodulation of marker gene tagged Rhizobium galegaestrains in field lysimeters in the Boreal climatic zone. FEMS Microbiol. Ecol. 2, 2 (2003).

    Google Scholar 

  • 21.

    Bouyoucos, G. J. Hydrometer method improvement for making particle size analysis of soils. Agron. J. 54, 179–186 (1962).

    Google Scholar 

  • 22.

    Black, G. R. & Hertge, K. H. Bulk density. In methods of soil analysis (ed. Klute, A.) 377–382 (SSSA, Madison, Wiscosin, 1986).

    Google Scholar 

  • 23.

    Carter, M. R. & Gregorich, E. G. Soil Sampling and Methods of Analysis 2nd edn. (Canadian Soil Science Society, Boca Raton, 2008).

    Google Scholar 

  • 24.

    Mclean, E. O. Aluminum. In Methods of Soil Analysis, Part 2 chemical methods (ed. Black, C. A.) 978–998 (America Sci. Agron, Madison, 1965).

    Google Scholar 

  • 25.

    van Reeuwijk, L. P. Procedures for Soil Analysis 6th edn. (Technical Paper/International Soil Reference and Information Center, Wageningen, 2002).

    Google Scholar 

  • 26.

    Jońca, Z. & Lewandowski, W. Verification of measurement capabilities of flame atomic spectrometry for the determination of sodium, potassium, magnesium, and calcium in natural fresh water part I. Comparison of recommended methods. Polish J. Environ. Studies 13(3), 275–280 (2004).

    Google Scholar 

  • 27.

    Walkley, A. & Black, I. A. An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 37, 29–38 (1934).

    ADS  CAS  Article  Google Scholar 

  • 28.

    Bremner, J. M. & Mulvaney, C. S. Nitrogen total in methods of soil analysis. In Chemical and Microbiological Properties (ed. Page, A. L.) (SSSA, Wiscosin, 1982).

    Google Scholar 

  • 29.

    Olsen, S. R., Cole, C. V., Watanabe, F. S. & Dean, L. A. Estimation of available phosphorous in soils by extraction with sodium bicarbonate. USDA Circ. 939, 1–19 (1954).

    Google Scholar 

  • 30.

    Vincent, J. M. A manual for the Practical Study of Root-Nodule Bacteria. IBP Handbook No 15 (Blackwell Scientific Publications Ltd, Oxford, 1970).

    Google Scholar 

  • 31.

    Woomer, P., Bennett, J. & Yost, R. Overcoming inflexibilities in most-probable-number-procedures. Agron. J. 82, 349–353 (1990).

    Article  Google Scholar 

  • 32.

    Somasegaran, P. & Hoben, H. J. Handbook for Rhizobia: Methods in Legume-Rhizobium Technology (Springer Verlag, New York, 1994).

    Google Scholar 

  • 33.

    Broughton, W. J. & Diworth, M. J. Control of leghemoglobin synthesis in snake beans. Biochem. J. 125, 1075–1080 (1971).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 34.

    Guene, N. F. D., Diouf, A. & Gueye, M. Nodulation and nitrogen fixation of field grown common bean (Phaseolus vulgaris) as influenced by fungicide seed treatment. Afr. J. Biotechnol. 2(7), 198–201 (2003).

    CAS  Article  Google Scholar 

  • 35.

    Ondieki, D. K., Nyaboga, E. N., Wagacha, J. M. & Mwaura, F. B. Morphological and genetic diversity of rhizobia nodulating cowpea (Vigna unguiculata L.) from agricultural soils of Lower Eastern Kenya. Int. J. Microbiol. 2017, 1–9 (2017).

    Article  CAS  Google Scholar 

  • 36.

    Rice, W. A., Clyton, G. W., Lupwayi, N. Z. & Olsen, P. E. Evaluation of coated seeds as a Rhizobium delivery system for field pea. Can. J. Plant Sci. 81(1), 248–249 (2001).

    Google Scholar 

  • 37.

    Beets, P. N., Pearce, S. H., Oliver, G. R. & Clinton, P. W. Root to shoot rations for deriving below-ground biomass of Pinus radiate standards. New Zealand J. Forestry Sci. 37(2), 267–288 (2007).

    Google Scholar 

  • 38.

    SAS. SAS/STAT Software Syntax, Version 9.0. SAS Institute, Cary, NC. USA(2010).

  • 39.

    Raposeiras, R. et al. Rhizobium strains competitiveness on bean nodulation in Cerrado soils. Brasilia 41, 439–447 (2006).

    Google Scholar 

  • 40.

    Ulzen, J. Optimizing legume-rhizobia symbiosis to enhance legume grain yield in smallholder farming system in Ghana. A thesis submitted to the Department of Crop and Soil Sciences, Faculty of Agriculture, Kwame Nkrumah University Science and Technology, Kumasi, in partial fulfillment of the requirements of the degree of doctor of philosophy in soil science(2018).

  • 41.

    Zengeni, R., Mpepereki, S. & Giller, K. E. Manure and soil properties affect survival and persistence of soybean nodulation rhizobia in smallholder soils of Zimbabwe. Agric. Ecosyst. Environ. Appl. Soil Eco. 32, 232–242 (2006).

    Article  Google Scholar 

  • 42.

    Jida, M. & Assefa, F. Phenotypic diversity and plant growth promoting characteristics of Mesorhizobium species isolated from faba bean (Vicia faba L.) growing areas of Ethiopia. Afr. J. Biotechnol. 11, 7483–7493 (2012).

    CAS  Google Scholar 

  • 43.

    Kawaletz, H., Molder, I., Terwei, P. A. A. & Ammer, S. Z. C. Pot experiments with woody species. A review. Forestry 87, 4 (2014).

    Article  Google Scholar 

  • 44.

    Farid, M. & Navabi, A. N2 fixation ability of different dry bean genotypes. Can. J. Plant Sci. 95, 1243–1257 (2015).

    CAS  Article  Google Scholar 

  • 45.

    Nkot, L. N. et al. Abundance of legume nodulating bacteria in soils of diverse land use systems in Cameroon. Univ. J. Plant Sci. 3(5), 97–108 (2015).

    Article  Google Scholar 

  • 46.

    Solomon, T., Pant, L.M. & Angaw, T. Effects of inoculation by Bradyrhizobium japonicum strains on nodulation, nitrogen fixation, and yield of soybean (Glycine max L. Merill) varieties on Nitosols of Bako, western Ethiopia. International Scholarly Research Network ISRN Agron. 2012, Article ID 261475, Pp. 1–8 (2012).

  • 47.

    Adamu, A., Hailemariam, A., Assefa, F. & Bekele, E. Studies of Rhizobium inoculation and fertilizer treatment on growth and production of faba bean (Vicia faba L.) in some yield-depleted and yield-sustained regions of Semen Shoa. Ethiopia J. of Sci. 24, 197–211 (2001).

    Google Scholar 

  • 48.

    Mohammadi, K., Sohrabi, Y., Heidari, G., Khalesro, S. & Majidi, M. Effective factors on biological nitrogen fixation. Afr. J. Agric. Res. 7, 1782–1788 (2012).

    Google Scholar 

  • 49.

    Raven, J. A. Protein turnover and plant RNA and phosphorus requirement in relation to nitrogen fixation. Plant Sci. 189, 25–35 (2012).

    Article  CAS  Google Scholar 

  • 50.

    Bello, S. K., Yusuf, A. A. & Cargele, M. Performance of cowpea as influenced by native strain of rhizobia, lime and phosphorus in Samaru, Nigeria. Symbiosis 75, 167–176 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 51.

    Talaat, N. B. & Abdallah, A. M. Response of faba bean (Vicia faba L.) to dual inoculation with Rhizobium and VA mycorrhiza under different levels of N and P fertilization. J. Appl. Sci. Res. 4, 1092–1102 (2008).

    CAS  Google Scholar 

  • 52.

    Yoseph, T. & Worku, W. Effect of NP fertilizer rate and Bradyrhizobium inoculation on nodulation, N-uptake and crude protein content of soybean (Glycine Max (L) Merrill), at Jinka. Southern Ethiopia. J. Biol. Agric. Healthcare 4(6), 49–54 (2014).

    Google Scholar 

  • 53.

    Hungria, M., Campo, R. J. & Mendes, I. C. Benefits of inoculation of the common bean (Phaseolus vulgaris) crop with efficient and competitive Rhizobium tropici strains. Biol. Fertl. Soils 39, 51–61 (2003).

    Article  CAS  Google Scholar 

  • 54.

    Kellman, A.W. Rhizobium inoculation, cultivar and management effects on the growth, development and yield of common bean (Phaseolus vulgaris L.). A PhD thesis, Lincoln University, New Zealand(2008).

  • 55.

    Voisin, A. S., Salon, C. & Warembourg, F. R. Seasonal patterns of 13C partitioning between shoot and nodulated roots of N2-or nitrate fed- Pisum sativum (L). Ann. Bot. 91, 539–546 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 56.

    Graham, P. H., Hungria, M. & Tlusty, B. Breeding for better nitrogen fixation in grain legumes: Where do the rhizobia fit in?. Crop Manag https://doi.org/10.1094/CM-2004-0301-02-RV (2004).

    Article  Google Scholar 

  • 57.

    Minalku, A., Gebrekidan, H. & Assefa, F. Symbiotic effectiveness and characterization of Rhizobium strains of faba bean (Vicia faba L.) collected from eastern and western Hararghe highlands of Ethiopia. Ethiopian J. Nat. Resour 11(2), 223–244 (2009).

    Google Scholar 

  • 58.

    Sindhu, S., Dua, S., Verma, M. K. & Khandewal, A. Growth promotion of legumes by inoculation of rhizosphere bacteria. In Microbes for Legume Improvement (eds Khan, M. S. et al.) (Springer-Verlag, Wien, 2010).

    Google Scholar 

  • 59.

    Hemissi, I. et al. Effects of some Rhizobium strains on chickpea growth and biological control of Rhizoctonia solani. Afr. J. Micro. Res. 5(25), 4080–4090 (2011).

    CAS  Google Scholar 

  • 60.

    Zahran, H. H. Rhizobia from Wild legumes: Diversity, taxonomy, ecology, nitrogen fixation and biotechnology. J. Biotechnol. 91, 143–153 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 61.

    Zahir, Z. A., Arshad, M. & Frankenberger, J. R. Plant growth promoting Rhizobacteria: Applications and perspectives in agriculture. J. Adv. Agron. 81, 97–16 (2004).

    CAS  Article  Google Scholar 

  • 62.

    Thilakarathna, M. S. et al. Evaluating the effectiveness of Rhizobium inoculants and micronutrients as technologies for Nepalese common bean smallholder farmers in the real-world context of highly variable hillside environments and indigenous farming practices. Agriculture 9(20), 1–17 (2019).

    Google Scholar 

  • 63.

    Tena, W., Wolde-Meskel, E. & Walley, F. Symbiotic efficiency of native and exotic Rhizobium strains nodulating lentil (Lens culinaris Medik) in soils of southern Ethiopia. Agronomy 6, 1–11 (2016).

    Article  CAS  Google Scholar 

  • 64.

    Cakmakci, R., Donmez, M. F. & Erdogan, U. The effect of plant growth promoting rhizobacteria on barley seedling growth, nutrient uptake, some soil properties, and bacterial counts. Turk. J. Agr. For. 31, 189–199 (2007).

    CAS  Google Scholar 

  • 65.

    Kyei-Boahen, S., Giroux, C. & Walley, F. L. Fall vs Springrhizobial inoculation of chickpea. Can. J. Plant Sci. 85, 893–896 (2005).

    Article  Google Scholar 

  • 66.

    Oğutcu, H., Algur, O. F., Elkoca, E. & Kantar, F. The determination of symbiotic effectiveness of Rhizobium strains isolated from wild chickpeas collected from high altitudes in Erzurum. Turkey J. Agric. Forestry 32, 241–248 (2008).

    Google Scholar 

  • 67.

    Korir, H., Mungai, N. W., Thuita, M., Hamba, Y. & Masso, G. Co-inoculation effect of rhizobia and plant growth promoting rhizobacteria on common bean growth in a low phosphorus soil. Front. Plant Sci. 8, 141 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 68.

    van de Werf, A. & Negal, O. S. Carbon allocation to shoots and roots in relation to nitrogen supply is mediated by cytokinins and sucrose: Opinion. Plant Soil 185, 21–32 (1996).

    Article  Google Scholar 

  • 69.

    Koevoets, I. T., Venema, J. H., Elzegna, J. T. M. & Testerink, C. Roots withstanding their environment: Exploiting root system architecture responses to abiotic stress to improve crop tolerance. Front. Plant Sci. 7, 1335 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 70.

    Ferreira, P. A. A., Bomfeti, C. A., Soares, B. L. & Moreira, F. M. S. Efficient nitrogen-fixing Rhizobium strains isolated from Amazonian soils are highly tolerant to acidity and aluminum. World J. Microbiol. Biotechnol. 28(5), 1947–1959 (2012).

    Article  CAS  Google Scholar 

  • 71.

    Kawaka, F., Dida, M.M., Peter, A., Opala, P.A., Ombori, O., Maingi, J., Osoro, N., Muthini, M., Amoding, A., Mukaminega, D. & Muoma, J. Symbiotic efficiency of native rhizobia nodulating common bean (Phaseolus vulgaris L.) in soils of western Kenya. International Scholarly Research Notices (2014).

  • 72.

    Guo, Y. J., Ni, Y. & Huang, J. G. Effects of Rhizobium, arbuscular mycorrhiza and lime on nodulation, growth and nutrient uptake of lucerne in acid purplish soil in China. Trop. Grassl. 44, 109–114 (2010).

    Google Scholar 

  • 73.

    Gicharu, G. K., Gitonga, N. M., Boga, H., Cheruiyot, R. C. & Maingi, J. M. Effect of inoculating selected climbing bean cultivars with different rhizobia strains on nitrogen fixation. Int. J. Microbiol. Res. 1(2), 25–31 (2013).

    Google Scholar 

  • 74.

    Mothapo, N. V. et al. Cropping history affects nodulation and symbiotic efficiency of distinct hairy vetch (Vicia villosa Roth) genotypes with resident soil rhizobia. Biol. Fertil. Soils. 49(7), 871–879 (2013).

    Article  Google Scholar 

  • 75.

    Oono, R. & Denison, R. F. Comparing symbiotic efficiency between swollen versus non-swollen RhizobialBacteriods. Plant Physiol. 154, 1541–1548 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 76.

    Sharma, S., Upadhyay, R. G. & Sharma, C. R. Effect of Rhizobium inoculation and nitrogen on growth, dry matter accumulation and yield of black gram (Vigna mungo). Legume Res. 23(1), 64–66 (2000).

    Google Scholar 

  • 77.

    Kantar, F., Elkoca, E., Ögütcü, H. & Algur, Ö. F. Chickpea yields in relation to Rhizobium inoculation from wild chickpea at high altitudes. J. Agron. Crop Sci. 189, 291–297 (2003).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Brewing up a dirty-water remedy (and more) with kombucha-inspired biosensors

    Continuous versus discrete quantity discrimination in dune snail (Mollusca: Gastropoda) seeking thermal refuges