Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).
Google Scholar
Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Change 3, 919–925 (2013).
Google Scholar
Chen, I. C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).
Google Scholar
Lenoir, J. & Svenning, J.-C. Climate-related range shifts—a global multidimensional synthesis and new research directions. Ecography 38, 15–28 (2015).
Google Scholar
Robinson, L. M. et al. Pushing the limits in marine species distribution modelling: lessons from the land present challenges and opportunities. Glob. Ecol. Biogeogr. 20, 789–802 (2011).
Google Scholar
Guisan, A. et al. Making better biogeographical predictions of species’ distributions. J. Appl. Ecol. 43, 386–392 (2006).
Google Scholar
Wilson, R. P., Culik, B., Coria, N. R., Adelung, D. & Spairani, H. J. Foraging rhythms in Adélie penguins (Pygoscelis adeliae) at Hope Bay, Antarctica; determination and control. Polar Biol. 10, 161–165 (1989).
Aksnes, D. & Utne, A. C. W. A revised model of visual range in fish. Sarsia 4827, 37–41 (1997).
Johansen, R., Barrett, R. T. & Pedersen, T. Foraging strategies of great cormorants Phalacrocorax carbo carbo wintering north of the Arctic Circle. Bird Study 48, 59–67 (2001).
Google Scholar
Varpe, Ø. Life history adaptations to seasonality. Integr. Comp. Biol. 57, 943–960 (2017).
Google Scholar
Poloczanska, E. S. et al. Responses of marine organisms to climate change across oceans. Front. Mar. Sci. 3, 62 (2016).
Google Scholar
Saikkonen, K. et al. Climate change-driven species’ range shifts filtered by photoperiodism. Nat. Clim. Change 2, 239–242 (2012).
Google Scholar
Bradshaw, W. E. & Holzapfel, C. M. Light, time, and the physiology of biotic response to rapid climate change in animals. Annu. Rev. Physiol. 72, 147–166 (2010).
Google Scholar
Huffeldt, N. P. Photic barriers to poleward range-shifts. Trends Ecol. Evol. 35, 652–655 (2020).
Google Scholar
Sunday, J. M., Bates, A. E. & Dulvy, N. K. Thermal tolerance and the global redistribution of animals. Nat. Clim. Change 2, 686–690 (2012).
Google Scholar
Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).
Google Scholar
Kaartvedt, S. Photoperiod may constrain the effect of global warming in arctic marine systems. J. Plankton Res. 30, 1203–1206 (2008).
Google Scholar
Sundby, S., Drinkwater, K. F. & Kjesbu, O. S. The North Atlantic spring-bloom system—where the changing climate meets the winter dark. Front. Mar. Sci. 3, 28 (2016).
Google Scholar
Langbehn, T. J. & Varpe, Ø. Sea-ice loss boosts visual search: fish foraging and changing pelagic interactions in polar oceans. Glob. Chang. Biol. 23, 5318–5330 (2017).
Google Scholar
Irigoien, X., Klevjer, T. A. & Røstad, A. Large mesopelagic fishes biomass and trophic efficiency in the open ocean. Nat. Commun. 5, 3271 (2014).
Google Scholar
Geoffroy, M. et al. Mesopelagic sound scattering layers of the high Arctic: seasonal variations in biomass, species assemblage, and trophic relationships. Front. Mar. Sci. 6, 364 (2019).
Google Scholar
Jobling, M. Fish Bioenergetics (Chapman & Hall, 1994).
Ljungström, G., Claireaux, M., Fiksen, Ø. & Jørgensen, C. Body size adaptions under climate change: zooplankton community more important than temperature or food abundance in model of a zooplanktivorous fish. Mar. Ecol. Prog. Ser. 636, 1–18 (2020).
Google Scholar
Enberg, K. et al. Fishing-induced evolution of growth: concepts, mechanisms and the empirical evidence. Mar. Ecol. 33, 1–25 (2012).
Google Scholar
Langbehn, T., Aksnes, D., Kaartvedt, S., Fiksen, Ø. & Jørgensen, C. Light comfort zone in a mesopelagic fish emerges from adaptive behaviour along a latitudinal gradient. Mar. Ecol. Prog. Ser. 623, 161–174 (2019).
Google Scholar
Røstad, A., Kaartvedt, S. & Aksnes, D. L. Erratum to ‘Light comfort zones of mesopelagic acoustic scattering layers in two contrasting optical environments’ [Deep Sea Res. I 113 (2016) 1–6]. Deep Sea Res. I Oceanogr. Res. Pap. 114, 162–164 (2016).
Røstad, A., Kaartvedt, S. & Aksnes, D. L. Light comfort zones of mesopelagic acoustic scattering layers in two contrasting optical environments. Deep Sea Res. I Oceanogr. Res. Pap. 113, 1–6 (2016).
Clark, C. W. & Levy, D. A. Diel vertical migrations by juvenile sockeye salmon and the antipredation window. Am. Nat. 131, 271–290 (1988).
Google Scholar
Scheuerell, M. D. & Schindler, D. E. Diel vertical migration by juvenile sockeye salmon: empirical evidence for the antipredation window. Ecology 84, 1713–1720 (2003).
Google Scholar
Boyce, M. S. Seasonality and patterns of natural selection for life histories. Am. Nat. 114, 569–583 (1979).
Google Scholar
Roff, D. A. The Evolution of Life Histories: Theory and Analysis (Chapman & Hall, 1992).
Stearns, S. C. The Evolution of Life Histories (Oxford University Press, 1992).
Varpe, Ø., Jørgensen, C., Tarling, G. A. & Fiksen, Ø. The adaptive value of energy storage and capital breeding in seasonal environments. Oikos 118, 363–370 (2009).
Google Scholar
Hagen, W. & Auel, H. Seasonal adaptations and the role of lipids in oceanic zooplankton. Zoology 104, 313–326 (2001).
Google Scholar
Robinson, N. M., Nelson, W. A., Costello, M. J., Sutherland, J. E. & Lundquist, C. J. A systematic review of marine-based species distribution models (SDMs) with recommendations for best practice. Front. Mar. Sci. 4, 421 (2017).
Google Scholar
Jones, M. C. & Cheung, W. W. L. Multi-model ensemble projections of climate change effects on global marine biodiversity. ICES J. Mar. Sci. 72, 741–752 (2015).
Google Scholar
García Molinos, J. et al. Climate velocity and the future global redistribution of marine biodiversity. Nat. Clim. Change 6, 83–88 (2016).
Google Scholar
Cheung, W. W. L. et al. Projecting global marine biodiversity impacts under climate change scenarios. Fish. Fish. 10, 235–251 (2009).
Google Scholar
Sinclair, S. J., White, M. D. & Newell, G. R. How useful are species distribution models for managing biodiversity under future climates? Ecol. Soc. 15, 8 (2010).
Google Scholar
Twiname, S. et al. A cross-scale framework to support a mechanistic understanding and modelling of marine climate-driven species redistribution, from individuals to communities. Ecography 43, 1764–1778 (2020).
Dullinger, S. et al. Extinction debt of high-mountain plants under twenty-first-century climate change. Nat. Clim. Change 2, 619–622 (2012).
Google Scholar
Bush, A. et al. Incorporating evolutionary adaptation in species distribution modelling reduces projected vulnerability to climate change. Ecol. Lett. 19, 1468–1478 (2016).
Google Scholar
Cheung, W. W. L., Dunne, J., Sarmiento, J. L. & Pauly, D. Integrating ecophysiology and plankton dynamics into projected maximum fisheries catch potential under climate change in the Northeast Atlantic. ICES J. Mar. Sci. 68, 1008–1018 (2011).
Google Scholar
Saunders, R. A., Collins, M. A., Stowasser, G. & Tarling, G. A. Southern Ocean mesopelagic fish communities in the Scotia Sea are sustained by mass immigration. Mar. Ecol. Prog. Ser. 569, 173–185 (2017).
Google Scholar
Audzijonyte, A. et al. Atlantis: a spatially explicit end-to-end marine ecosystem model with dynamically integrated physics, ecology and socio-economic modules. Methods Ecol. Evol. 10, 1814–1819 (2019).
Google Scholar
Alerstam, T., Hedenström, A. & Åkesson, S. Long-distance migration: evolution and determinants. Oikos 103, 247–260 (2003).
Google Scholar
Nøttestad, L., Giske, J., Holst, J. C. & Huse, G. A length-based hypothesis for feeding migrations in pelagic fish. Can. J. Fish. Aquat. Sci. 56, 26–34 (1999).
Google Scholar
Roff, D. A. The evolution of migration and some life history parameters in marine fishes. Environ. Biol. Fishes 22, 133–146 (1988).
Google Scholar
Alder, J., Campbell, B., Karpouzi, V., Kaschner, K. & Pauly, D. Forage fish: from ecosystems to markets. Annu. Rev. Environ. Resour. 33, 153–166 (2008).
Google Scholar
Houston, A. I. & McNamara, J. M. Models of Adaptive Behaviour: An Approach Based on State (Cambridge University Press, 1999).
Clark, C. W. & Mangel, M. Dynamic State Variable Models in Ecology (Oxford University Press, 2000).
Hoegh-Guldberg, O. et al. in Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Barros, V. R. et al) 1655 (Cambridge Univ. Press, 2014).
Seidov, D. Greenland–Iceland–Norwegian Seas Regional Climatology version 2 (Regional 497 Climatology Team, NOAA/NCEI, 2018).
Drange, H. & Simonsen, K. Formulation of Air–Sea Fluxes in the ESOP2 Version of MICOM (1996).
Source: Ecology - nature.com