in

Limited protection and ongoing loss of tropical cloud forest biodiversity and ecosystems worldwide

  • 1.

    Bruijnzeel, L. A., Scatena, F. N. & Hamilton, L. S. (eds) Tropical Montane Cloud Forests: Science for Conservation and Management (Cambridge Univ. Press, 2011); https://doi.org/10.1017/CBO9780511778384

  • 2.

    Mulligan, M. in Tropical Montane Cloud Forests: Science for Conservation and Management (eds Bruijnzeel, L. A. et al.) 14–38 (Cambridge Univ. Press, 2011); https://doi.org/10.1017/CBO9780511778384.004

  • 3.

    Doumenge, C., Gilmour, D., Pérez, M. R. & Blockhus, J. in Tropical Montane Cloud Forests (eds Hamilton, L. S. et al.) 24–37 (Springer-Verlag, 1995).

  • 4.

    Cadotte, M. W., Carscadden, K. & Mirotchnick, N. Beyond species: functional diversity and the maintenance of ecological processes and services. J. Appl. Ecol. 48, 1079–1087 (2011).

    Article 

    Google Scholar 

  • 5.

    Bruijnzeel, L. A., Mulligan, M. & Scatena, F. N. Hydrometeorology of tropical montane cloud forests: emerging patterns. Hydrol. Process. 25, 465–498 (2011).

    Article 

    Google Scholar 

  • 6.

    Gentry, A. H. Tropical forest biodiversity: distributional patterns and their conservational significance. Oikos 63, 19–28 (1992).

    Article 

    Google Scholar 

  • 7.

    Foster, P. The potential negative impacts of global climate change on tropical montane cloud forests. Earth-Sci. Rev. 55, 73–106 (2001).

    Article 

    Google Scholar 

  • 8.

    Hamilton, L. S., Juvik, J. O. & Scatena, F. N. in Tropical Montane Cloud Forests (eds Hamilton, L. S. et al.) 1–18 (Springer-Verlag, 1995).

  • 9.

    Ponce-Reyes, R. et al. Vulnerability of cloud forest reserves in Mexico to climate change. Nat. Clim. Change 2, 448–452 (2012).

    Article 

    Google Scholar 

  • 10.

    Swenson, J. J. et al. Plant and animal endemism in the eastern Andean slope: challenges to conservation. BMC Ecol. 12, 1 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 11.

    Gould, W. A., González, G. & Rivera, G. C. Structure and composition of vegetation along an elevational gradient in Puerto Rico. J. Veg. Sci. 17, 653–664 (2006).

    Article 

    Google Scholar 

  • 12.

    Betts, M. G. et al. Global forest loss disproportionately erodes biodiversity in intact landscapes. Nature 547, 441–444 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 13.

    Paulsen, J. & Körner, C. A climate-based model to predict potential treeline position around the globe. Alp. Bot. 124, 1–12 (2014).

    Article 

    Google Scholar 

  • 14.

    Jarvis, A. & Mulligan, M. The climate of cloud forests. Hydrol. Process. 25, 327–343 (2011).

    Article 

    Google Scholar 

  • 15.

    Scatena, F. N., Bruijnzeel, L. A., Bubb, P. & Das, S. in Tropical Montane Cloud Forests: Science for Conservation and Management (eds Bruijnzeel, L. A. et al.) 3–13 (Cambridge Univ. Press, 2011); https://doi.org/10.1017/CBO9780511778384.003

  • 16.

    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 17.

    Körner, C. et al. A global inventory of mountains for bio-geographical applications. Alp. Bot. 127, 1–15 (2017).

    Article 

    Google Scholar 

  • 18.

    Jetz, W., McPherson, J. M. & Guralnick, R. P. Integrating biodiversity distribution knowledge: toward a global map of life. Trends Ecol. Evol. 27, 151–159 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 19.

    Gillespie, R. G. et al. Long-distance dispersal: a framework for hypothesis testing. Trends Ecol. Evol. 27, 47–56 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 20.

    Kreft, H., Jetz, W., Mutke, J. & Barthlott, W. Contrasting environmental and regional effects on global pteridophyte and seed plant diversity. Ecography 33, 408–419 (2010).

    Article 

    Google Scholar 

  • 21.

    Joppa, L. N. & Pfaff, A. High and far: biases in the location of protected areas. PLoS ONE 4, e8273 (2009).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 22.

    Venter, Z. S., Cramer, M. D. & Hawkins, H.-J. Drivers of woody plant encroachment over Africa. Nat. Commun. 9, 2272 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 23.

    Lawton, R. O., Nair, U. S., Pielke, R. A. & Welch, R. M. Climatic impact of tropical lowland deforestation on nearby montane cloud forests. Science 294, 584–587 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 24.

    Grantham, H. S. et al. Anthropogenic modification of forests means only 40% of remaining forests have high ecosystem integrity. Nat. Commun. 11, 5978 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 25.

    Guo, W.-Y. et al. Half of the world’s tree biodiversity is unprotected and is increasingly threatened by human activities. Preprint at bioRxiv https://doi.org/10.1101/2020/04.21.052464 (2020).

  • 26.

    Helmer, E. H. et al. Neotropical cloud forests and páramo to contract and dry from declines in cloud immersion and frost. PLoS ONE 14, e0213155 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 27.

    Peters, M. K. et al. Climate–land-use interactions shape tropical mountain biodiversity and ecosystem functions. Nature 568, 88–92 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 28.

    Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).

    CAS 
    Article 

    Google Scholar 

  • 29.

    Seneviratne, S. I. et al. in Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (eds Field, C. B. et al.) 109–230 (Cambridge Univ. Press, 2012).

  • 30.

    Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 31.

    Beusekom, A. E. V., González, G. & Scholl, M. A. Analyzing cloud base at local and regional scales to understand tropical montane cloud forest vulnerability to climate change. Atmos. Chem. Phys. 17, 7245–7259 (2017).

    Article 
    CAS 

    Google Scholar 

  • 32.

    Jones, K. R. et al. One-third of global protected land is under intense human pressure. Science 360, 788–791 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 33.

    Gross, J. E., Goetz, S. J. & Cihlar, J. Application of remote sensing to parks and protected area monitoring: introduction to the special issue. Remote Sens. Environ. 113, 1343–1345 (2009).

    Article 

    Google Scholar 

  • 34.

    Visconti, P. et al. Protected area targets post-2020. Science 364, 239–241 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 35.

    Di Minin, E. & Toivonen, T. Global protected area expansion: creating more than paper parks. BioScience 65, 637–638 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 36.

    Wetzel, F. T., Beissmann, H., Penn, D. J. & Jetz, W. Vulnerability of terrestrial island vertebrates to projected sea-level rise. Glob. Change Biol. 19, 2058–2070 (2013).

    Article 

    Google Scholar 

  • 37.

    Keil, P., Storch, D. & Jetz, W. On the decline of biodiversity due to area loss. Nat. Commun. 6, 8837 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 38.

    Rybicki, J. & Hanski, I. Species–area relationships and extinctions caused by habitat loss and fragmentation. Ecol. Lett. 16, 27–38 (2013).

    PubMed 
    Article 

    Google Scholar 

  • 39.

    Lewis, S. L., Edwards, D. P. & Galbraith, D. Increasing human dominance of tropical forests. Science 349, 827–832 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 40.

    Johnson, C. N. et al. Biodiversity losses and conservation responses in the Anthropocene. Science 356, 270–275 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 41.

    Wilson, E. O. Half-Earth: Our Planet’s Fight for Life (WW Norton & Company, 2016).

  • 42.

    Liu, J. et al. Complexity of coupled human and natural systems. Science 317, 1513–1516 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 43.

    Schulze, K., Malek, Ž. & Verburg, P. H. Towards better mapping of forest management patterns: a global allocation approach. For. Ecol. Manage. 432, 776–785 (2019).

    Article 

    Google Scholar 

  • 44.

    Curtis, C. A., Pasquarella, V. J. & Bradley, B. A. Landscape characteristics of non-native pine plantations and invasions in southern Chile. Austral Ecol. 44, 1213–1224 (2019).

    Article 

    Google Scholar 

  • 45.

    Aldrich, M., Billington, C., Edwards, M. & Laidlaw, R. A Global Directory of Tropical Montane Cloud Forests (WCMC, 1997).

  • 46.

    Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 47.

    Karger, D. N. et al. Data from: Climatologies at high resolution for the earth’s land surface areas. Dryad https://doi.org/10.5061/dryad.kd1d4 (2017).

  • 48.

    Danielson, J. J. & Gesch, D. B. Global Multi-Resolution Terrain Elevation Data 2010 (GMTED2010) Open-File Report No. 2011-1073 (USGS, 2011).

  • 49.

    Guisan, A. & Zimmermann, N. E. Predictive habitat distribution models in ecology. Ecol. Modell. 135, 147–186 (2000).

    Article 

    Google Scholar 

  • 50.

    Guisan, A. & Thuiller, W. Predicting species distribution: offering more than simple habitat models. Ecol. Lett. 8, 993–1009 (2005).

    Article 

    Google Scholar 

  • 51.

    Karmalkar, A. V., Bradley, R. S. & Diaz, H. F. Climate Change scenario for Costa Rican montane forests. Geophys. Res. Lett. 35, L11702 (2008).

    Article 

    Google Scholar 

  • 52.

    Wilson, A. M. & Jetz, W. Remotely sensed high-resolution global cloud dynamics for predicting ecosystem and biodiversity distributions. PLoS Biol. 14, e1002415 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 53.

    Thuiller, W., Guéguen, M., Renaud, J., Karger, D. N. & Zimmermann, N. E. Uncertainty in ensembles of global biodiversity scenarios. Nat. Commun. 10, 1446 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 54.

    Heikkinen, R. K. et al. Methods and uncertainties in bioclimatic envelope modelling under climate change. Prog. Phys. Geogr. 30, 751–777 (2006).

    Article 

    Google Scholar 

  • 55.

    Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57 (2011).

    Article 

    Google Scholar 

  • 56.

    Fithian, W. & Hastie, T. Finite-sample equivalence in statistical models for presence-only data. Ann. Appl. Stat. 7, 1917–1939 (2013).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 57.

    Nelder, J. A. & Wedderburn, R. W. M. Generalized linear models. J. R. Stat. Soc. Ser. A 135, 370–384 (1972).

    Article 

    Google Scholar 

  • 58.

    Hastie, T. J. & Tibshirani, R. J. Generalized Additive Models (Chapman & Hall/CRC Monographs on Statistics and Applied Probability, 1990).

  • 59.

    Barbet-Massin, M., Jiguet, F., Albert, C. H. & Thuiller, W. Selecting pseudo-absences for species distribution models: how, where and how many? Methods Ecol. Evol. 3, 327–338 (2012) .

    Article 

    Google Scholar 

  • 60.

    Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).

    Article 

    Google Scholar 

  • 61.

    Aide, T. M. et al. Deforestation and reforestation of Latin America and the Caribbean (2001–2010). Biotropica 45, 262–271 (2013).

    Article 

    Google Scholar 

  • 62.

    Aide, T. M., Ruiz-Jaen, M. C. & Grau, H. R. in Tropical Montane Cloud Forests: Science for Conservation and Management (eds Bruijnzeel, L. A. et al.) 101–109 (Cambridge Univ. Press, 2011).

  • 63.

    Schwartz, N. B., Aide, T. M., Graesser, J., Grau, H. R. & Uriarte, M. Reversals of reforestation across Latin America limit climate mitigation potential of tropical forests. Front. For. Glob. Change 3, 85 (2020).

    Article 

    Google Scholar 

  • 64.

    Bubb, P. et al. Cloud Forest Agenda (UNEP-WCMC, 2004); https://www.unep-wcmc.org/cloud-forest-agenda

  • 65.

    Bockor, I. Analyse von Baumartenzusammensetzung und Bestandes-struckturen eines andinen Wolkenwaldes in Westvenezuela als Grundlagezur Wald-typengliederung. PhD thesis, Univ. Göttingen (1979).

  • 66.

    The State of the World’s Forests 2020: Forests, Biodiversity and People (FAO & UNEP, 2020); https://doi.org/10.4060/ca8642en

  • 67.

    Ribas, L. G., dos, S., Pressey, R. L., Loyola, R. & Bini, L. M. A global comparative analysis of impact evaluation methods in estimating the effectiveness of protected areas. Biol. Conserv. 246, 108595 (2020).

    Article 

    Google Scholar 

  • 68.

    Schleicher, J. et al. Statistical matching for conservation science. Conserv. Biol. 34, 538–549 (2020).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 69.

    Khandker, S., B. Koolwal, G. & Samad, H. Handbook on Impact Evaluation: Quantitative Methods and Practices (World Bank, 2009).

  • 70.

    Barber, C. P., Cochrane, M. A., Souza, C. M. & Laurance, W. F. Roads, deforestation, and the mitigating effect of protected areas in the Amazon. Biol. Conserv. 177, 203–209 (2014).

    Article 

    Google Scholar 

  • 71.

    Andam, K. S., Ferraro, P. J., Pfaff, A., Sanchez-Azofeifa, G. A. & Robalino, J. A. Measuring the effectiveness of protected area networks in reducing deforestation. Proc. Natl Acad. Sci. USA 105, 16089–16094 (2008).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 72.

    Laurance, W. F. et al. Predictors of deforestation in the Brazilian Amazon. J. Biogeogr. 29, 737–748 (2002).

    Article 

    Google Scholar 

  • 73.

    Etter, A., McAlpine, C., Wilson, K., Phinn, S. & Possingham, H. Regional patterns of agricultural land use and deforestation in Colombia. Agric. Ecosyst. Environ. 114, 369–386 (2006).

    Article 

    Google Scholar 

  • 74.

    Geist, H. J. & Lambin, E. F. What drives tropical deforestation? LUCC Report Series No. 4 (LUCC, 2001).

  • 75.

    Nelson, A. et al. A suite of global accessibility indicators. Sci. Data 6, 266 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 76.

    Amatulli, G. et al. A suite of global, cross-scale topographic variables for environmental and biodiversity modeling. Sci. Data 5, 180040 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 77.

    Körner, C., Paulsen, J. & Spehn, E. M. A definition of mountains and their bioclimatic belts for global comparisons of biodiversity data. Alp. Bot. 121, 73 (2011).

    Article 

    Google Scholar 

  • 78.

    The IUCN Red List of Threatened Species version 2016.1 (IUCN, 2016); http://www.iucnredlist.org

  • 79.

    Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 80.

    Storch, D., Keil, P. & Jetz, W. Universal species–area and endemics–area relationships at continental scales. Nature 488, 78–81 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 81.

    Drakare, S., Lennon, J. J. & Hillebrand, H. The imprint of the geographical, evolutionary and ecological context on species–area relationships. Ecol. Lett. 9, 215–227 (2006).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 82.

    Quintero, I. & Jetz, W. Global elevational diversity and diversification of birds. Nature 555, 246–250 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    Q&A: Vivienne Sze on crossing the hardware-software divide for efficient artificial intelligence

    China’s transition to electric vehicles