in

Limited resilience of the soil microbiome to mechanical compaction within four growing seasons of agricultural management

  • 1.

    Hamza MA, Anderson WK. Soil compaction in cropping systems: a review of the nature, causes and possible solutions. Soil and Tillage Res. 2005;82:121–45.

    Article 

    Google Scholar 

  • 2.

    Etana A, Larsbo M, Keller T, Arvidsson J, Schjønning P, Forkman J, et al. Persistent subsoil compaction and its effects on preferential flow patterns in a loamy till soil. Geoderma. 2013;192:430–6.

    Article 

    Google Scholar 

  • 3.

    de Andrade Bonetti J, Anghinoni I, de Moraes MT, Fink JR. Resilience of soils with different texture, mineralogy and organic matter under long-term conservation systems. Soil Tillage Res. 2017;174:104–12.

    Article 

    Google Scholar 

  • 4.

    FAO. Status of the world’s soil resources – main report. Food and agriculture organization of the United Nations and intergovernmental technical panel on soils. 607 (2015). http://www.fao.org/3/i5199e/I5199E.pdf

  • 5.

    Garrigues E, Corson MS, Angers DA, Van Der Werf HMG, Walter C. Development of a soil compaction indicator in life cycle assessment. Int J Life Cycle Assess. 2013;18:1316–24.

    Article 

    Google Scholar 

  • 6.

    Schäffer B, Stauber M, Mueller TL, Müller R, Schulin R. Soil and macro-pores under uniaxial compression. I. Mechanical stability of repacked soil and deformation of different types of macro-pores. Geoderma. 2008;146:183–91.

    Article 

    Google Scholar 

  • 7.

    Pagliai M, Marsili A, Servadio P, Vignozzi N, Pellegrini S. Changes in some physical properties of a clay soil in Central Italy following the passage of rubber tracked and wheeled tractors of medium power. Soil Tillage Res. 2003;73:119–29.

    Article 

    Google Scholar 

  • 8.

    Gysi M, Ott A, Flühler H. Influence of single passes with high wheel load on a structured, unploughed sandy loam soil. Soil Tillage Res. 1999;52:141–51.

    Article 

    Google Scholar 

  • 9.

    Czyz EA. Effects of traffic on soil aeration, bulk density and growth of spring barley. Soil Tillage Res. 2004;79:153–66.

    Article 

    Google Scholar 

  • 10.

    Drewry JJ, Paton RJ, Monaghan RM. Soil compaction and recovery cycle on a Southland dairy farm: Implications for soil monitoring. Aust J Soil Res. 2004;42:851–6.

    Article 

    Google Scholar 

  • 11.

    Keller T, Colombi T, Ruiz S, Manalili MP, Rek J, Stadelmann V, et al. Long-term soil structure observatory for monitoring post-compaction evolution of soil structure. Vadose Zo. J. 2017;16:1–16.

    Google Scholar 

  • 12.

    Wingate-Hill R, Jakobsen BF. Increased mechanisation and soil damage in forests – a review. New Zeal J For Sci. 1982;12:380–93.

    Google Scholar 

  • 13.

    Fierer N, Schimel JP, Holden PA. Variations in microbial community composition through two soil depth profiles. Soil Biol Biochem. 2003;35:167–76.

    CAS 
    Article 

    Google Scholar 

  • 14.

    Jégou D, Brunotte J, Rogasik H, Capowiez Y, Diestel H, Schrader S, et al. Impact of soil compaction on earthworm burrow systems using X-ray computed tomography: preliminary study. Eur J Soil Biol. 2002;38:329–36.

    Article 

    Google Scholar 

  • 15.

    Larsen T, Schjønning P, Axelsen J. The impact of soil compaction on euedaphic Collembola. Appl Soil Ecol. 2004;26:273–81.

    Article 

    Google Scholar 

  • 16.

    Rosolem C, Foloni JS, Tiritan C. Root growth and nutrient accumulation in cover crops as affected by soil compaction. Soil Tillage Res. 2002;65:109–15.

    Article 

    Google Scholar 

  • 17.

    Arvidsson J, Håkansson I. Response of different crops to soil compaction-Short-term effects in Swedish field experiments. Soil Tillage Res. 2014;138:56–63.

    Article 

    Google Scholar 

  • 18.

    van der Linden AMA, Jeurisson LJJ, Van Veen JA, Schippers G. Turnover of soil microbial biomass as influence by soil compaction. In: Hansen J., Henriksen K. Editors. Nitrogen in Organic Wastes Applied to Soil, London, UK: Academic Press;1989, pp. 25–36.

  • 19.

    Weisskopf P, Reiser R, Rek J, Oberholzer HR. Effect of different compaction impacts and varying subsequent management practices on soil structure, air regime and microbiological parameters. Soil Tillage Res. 2010;111:65–74.

    Article 

    Google Scholar 

  • 20.

    Li Q, Lee Allen H, Wollum AG. Microbial biomass and bacterial functional diversity in forest soils: effects of organic matter removal, compaction, and vegetation control. Soil Biol Biochem. 2004;36:571–9.

    CAS 
    Article 

    Google Scholar 

  • 21.

    Tan X, Chang SX. Soil compaction and forest litter amendment affect carbon and net nitrogen mineralization in a boreal forest soil. Soil Tillage Res. 2007;93:77–86.

    Article 

    Google Scholar 

  • 22.

    Dexter AR. Soil physical quality Part I. Theory, effects of soil texture, density, and organic matter, and effects on root growth. Geoderma. 2004;120:201–14.

    Article 

    Google Scholar 

  • 23.

    Renault P, Sierra J. Modeling oxygen diffusion in aggregated soils: II. Anaerobiosis in topsoil layers. Soil Sci Soc Am J. 1994;58:1017–23.

    CAS 
    Article 

    Google Scholar 

  • 24.

    Schnurr-Pütz S, Bååth E, Guggenberger G, Drake HL, Küsel K. Compaction of forest soil by logging machinery favours occurrence of prokaryotes. FEMS Microbiol Ecol. 2006;58:503–16.

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 25.

    Hartmann M, Niklaus PA, Zimmermann S, Schmutz S, Kremer J, Abarenkov K, et al. Resistance and resilience of the forest soil microbiome to logging-associated compaction. ISME J. 2014;8:226–44.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 26.

    Marshall VG. Impacts of forest harvesting on biological processes in northern forest soils. For Ecol Manage. 2000;133:43–60.

    Article 

    Google Scholar 

  • 27.

    Ponder F, Tadros M. Phospholipid fatty acids in forest soil four years after organic matter removal and Soil compaction. Appl Soil Ecol. 2002;19:173–82.

    Article 

    Google Scholar 

  • 28.

    Frey B, Kremer J, Rüdt A, Sciacca S, Matthies D, Lüscher P. Compaction of forest soils with heavy logging machinery affects soil bacterial community structure. Eur J Soil Biol. 2009;45:312–20.

    Article 

    Google Scholar 

  • 29.

    Hartmann M, Howes CG, VanInsberghe D, Yu H, Bachar D, Christen R, et al. Significant and persistent impact of timber harvesting on soil microbial communities in Northern coniferous forests. ISME J. 2012;6:2199–218.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 30.

    Calonego JC, Raphael JPA, Rigon JPG, de Oliveira Neto L, Rosolem CA. Soil compaction management and soybean yields with cover crops under no-till and occasional chiseling. Eur J Agron. 2017;85:31–37.

    Article 

    Google Scholar 

  • 31.

    Flisch R, Sinaj S, Charles R, Richner W. Grundlagen für die Düngung im Acker- und Futterbau (GRUDAF). Agrar Schweiz. 2009;16:6–31.

    Google Scholar 

  • 32.

    Suter D, Rosenberg E, Mosimann E, Frick R. Mélanges standard pour la production fourragère. Recherche agronomique suisse. 2017;8:1–16.

  • 33.

    Bürgmann H, Pesaro M, Widmer F, Zeyer J. A strategy for optimizing quality and quantity of DNA extracted from soil. J Microbiol Methods. 2001;45:7–20.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 34.

    Frey B, Rime T, Phillips M, Stierli B, Hajdas I, Widmer F, et al. Microbial diversity in European alpine permafrost and active layers. FEMS Microbiol Ecol. 2016;92:1–17.

    Article 
    CAS 

    Google Scholar 

  • 35.

    Tedersoo L, Lindahl B. Fungal identification biases in microbiome projects. Environ Microbiol Rep. 2016;8:774–9.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 36.

    Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci USA. 2011;108:4516–22.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 37.

    Henry S, Baudoin E, López-Gutiérrez JC, Martin-Laurent F, Brauman A, Philippot L. Quantification of denitrifying bacteria in soils by nirK gene targeted real-time PCR. J Microbiol Methods. 2004;59:327–35.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 38.

    Kandeler E, Deiglmayr K, Tscherko D, Bru D, Philippot L. Abundance of narG, nirS, nirK, and nosZ genes of denitrifying bacteria during primary successions of a glacier foreland. Appl Environ Microbiol. 2006;72:5957–62.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 39.

    Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016;4:e2584.

  • 40.

    Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:10–12.

    Article 

    Google Scholar 

  • 41.

    Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 42.

    Edgar RC, Flyvbjerg H. Error filtering, pair assembly and error correction for next-generation sequencing reads. Bioinformatics. 2015;31:3476–82.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 43.

    Edgar R. UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing. 2016. bioRxiv:081257. Available from: https://doi.org/10.1101/081257.

  • 44.

    Edgar R. UCHIME2: improved chimera prediction for amplicon sequencing. 2016. bioRxiv:074252. Available from: https://doi.org/10.1101/074252.

  • 45.

    Bengtsson-Palme J, Hartmann M, Eriksson KM, Pal C, Thorell K, Larsson DG, et al. metaxa2: improved identification and taxonomic classification of small and large subunit rRNA in metagenomic data. Mol Ecol Resour. 2015;15:1403–14.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 46.

    Bengtsson-Palme J, Ryberg M, Hartmann M, Branco S, Wang Z, Godhe A, et al. Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods Ecol. Evol. 2013;4:914–9.

    Google Scholar 

  • 47.

    Edgar R. SINTAX: a simple non-Bayesian taxonomy classifier for 16S and ITS sequences. 2016. bioRxiv:074161. Available from: https://doi.org/10.1101/074161.

  • 48.

    Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, et al. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 2007;35:7188–96.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 49.

    Abarenkov K, Henrik Nilsson R, Larsson KH, Alexander IJ, Eberhardt U, Erland S, et al. The UNITE database for molecular identification of fungi – recent updates and future perspectives. New Phytol. 2010;186:281–5.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 50.

    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2017. https://www.R-project.org/.

  • 51.

    Dinno A. dunn.test: Dunn’s Test of Multiple Comparisons Using Rank Sums. R  package version 1.3.5. 2017. https://CRAN.R-project.org/package=dunn.test.

  • 52.

    Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: Community Ecology Package. R package version 2.5-7. 2020. https://CRAN.R-project.org/package=vegan.

  • 53.

    Martiny JB, Martiny AC, Weihe C, Lu Y, Berlemont R, Brodie EL, et al. Microbial legacies alter decomposition in response to simulated global change. ISME J. 2017;11:490–9.

    PubMed 
    Article 

    Google Scholar 

  • 54.

    Hemkemeyer M, Christensen BT, Tebbe CC, Hartmann M. Taxon-specific fungal preference for distinct soil particle size fractions. Eur J Soil Biol. 2019;94:1–9.

    Article 

    Google Scholar 

  • 55.

    Anderson MJ. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 2001;26:32–46.

    Google Scholar 

  • 56.

    Maxime Hervé. RVAideMemoire: Testing and Plotting Procedures for Biostatistics. 2020. https://CRAN.R-project.org/package=RVAideMemoire.

  • 57.

    Gower JC. Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika. 1996;53:325–38.

    Article 

    Google Scholar 

  • 58.

    Anderson MJ, Willis TJ. Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology. Ecology. 2003;84:511–25.

    Article 

    Google Scholar 

  • 59.

    Kindt R, Coe R. Tree diversity analysis. A manual and software for common statistical methods for ecological and biodiversity studies. World Agroforestry Centre, Nairobi, Kenya (2005) ISBN 92-9059-179-X

  • 60.

    Storey JD, Tibshirani R. Statistical significance for genomewide studies. Proc Natl Acad Sci USA. 2003;100:9440–5.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 61.

    Storey JD, Bass A, Dabney A, Robinson, D. qvalue: Q-value estimation for false discovery rate control. R package version 2.22.0; 2020. http://qvalue.princeton.edu.

  • 62.

    Letunic I, Bork P. Interactive Tree of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2019;47:256–9.

    Article 
    CAS 

    Google Scholar 

  • 63.

    Louca S, Parfrey LW, Doebeli M. Faprotax: decoupling function and taxonomy in the global ocean microbiome. Science. 2016;353:1272–7.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 64.

    Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J, et al. FUNGuild: an open-annotation database for parsing fungal community datasets by ecological guild. Fungal Ecol. 2016;20:241–8.

    Article 

    Google Scholar 

  • 65.

    Horn R. Stress-strain effects in structured unsaturated soils on coupled mechanical and hydraulic processes. Geoderma. 2003;116:77–88.

    Article 

    Google Scholar 

  • 66.

    Reiser R, Stadelmann V, Weisskopf P, Grahm L, Keller T. System for quasi-continuous simultaneous measurement of oxygen diffusion rate and redox potential in soil. J Plant Nutr Soil Sci. 2020;183:316–26.

    CAS 
    Article 

    Google Scholar 

  • 67.

    Keller T, Colombi T, Ruiz S, Schymanski SJ, Weisskopf P, Koestel J, et al. Soil structure recovery following compaction – short-term evolution of soil physical properties in a loamy soil. Soil Sci Soc Am J. 2021;18:1–19.

    Google Scholar 

  • 68.

    Yvan C, Stéphane S, Stéphane C, Pierre B, Guy R, Hubert B. Role of earthworms in regenerating soil structure after compaction in reduced tillage systems. Soil Biol Biochem. 2012;55:93–103.

    CAS 
    Article 

    Google Scholar 

  • 69.

    Jabro JD, Allen BL, Rand T, Dangi SR, Campbell JW. Effect of previous crop roots on soil compaction in 2 yr rotations under a no-tillage system. Land. 2021;202:1–10.

    Google Scholar 

  • 70.

    Batey T. Soil compaction and soil management – a review. Soil Use and Manag. 2009;25:335–45.

    Article 

    Google Scholar 

  • 71.

    Cambi M, Certini G, Neri F, Marchi E. The impact of heavy traffic on forest soils: a review. For Ecol Manag. 2015;338:124–38.

    Article 

    Google Scholar 

  • 72.

    Hu W, Tabley F, Beare M, Tregurtha C, Gillespie R, Qiu W, et al. Short-term dynamics of soil physical properties as affected by compaction and tillage in a silt loam soil. Vadose Zo J. 2018;17:1–13.

    Google Scholar 

  • 73.

    Manyiwa T, Dikinya O. Impact of tillage types on compaction and physical properties of soils of Sebele farms in Botswana. Soil Environ. 2014;33:124–32.

    Google Scholar 

  • 74.

    Håkansson I, Reeder RC. Subsoil compaction by vehicles with high axle load-extent, persistence and crop response. Soil Tillage Res. 1994;29:277–304.

    Article 

    Google Scholar 

  • 75.

    Grayston SJ, Wang S, Campbell CD, Edwards AC. Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol Biochem. 1998;30:369–78.

    CAS 
    Article 

    Google Scholar 

  • 76.

    Degrune F, Theodorakopoulos N, Colinet G, Hiel MP, Bodson B, Taminiau B, et al. Temporal dynamics of soil microbial communities below the seedbed under two contrasting tillage regimes. Front Microbiol. 2017;8:1–15.

    Article 

    Google Scholar 

  • 77.

    Rousk J, Bååth E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, et al. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 2010;4:1340–51.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 78.

    Bach EM, Baer SG, Meyer CK, Six J. Soil texture affects soil microbial and structural recovery during grassland restoration. Soil Biol Biochem. 2010;42:2182–91.

    CAS 
    Article 

    Google Scholar 

  • 79.

    Evans CA, Coombes PJ, Dunstan RH. Wind, rain and bacteria: the effect of weather on the microbial composition of roof-harvested rainwater. Water Res. 2006;40:37–44.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 80.

    He M, Zhang J, Shen L, Xu L, Luo W, Li D, et al. High-throughput sequencing analysis of microbial community diversity in response to indica and japonica bar-transgenic rice paddy soils. PLoS ONE. 2019;14:1–26.

    Google Scholar 

  • 81.

    Gschwend F, Aregger K, Gramlich A, Walter T, Widmer F. Periodic waterlogging consistently shapes agricultural soil microbiomes by promoting specific taxa. Appl Soil Ecol. 2020;155:1–9.

    Article 

    Google Scholar 

  • 82.

    De Neve S, Hofman G. Influence of soil compaction on carbon and nitrogen mineralization of soil organic matter and crop residues. Biol Fertil Soils. 2000;30:544–9.

    Article 

    Google Scholar 

  • 83.

    Miransari M, Bahrami HA, Rejali F, Malakouti MJ. Effects of soil compaction and arbuscular mycorrhiza on corn (Zea mays L.) nutrient uptake. Soil Tillage Res. 2009;103:282–90.

    Article 

    Google Scholar 

  • 84.

    Ruser R, Flessa H, Russow R, Schmidt G, Buegger F, Munch JC. Emission of N2O, N2 and CO2 from soil fertilized with nitrate: effect of compaction, soil moisture and rewetting. Soil Biol Biochem. 2006;38:263–74.

    CAS 
    Article 

    Google Scholar 

  • 85.

    Bao Q, Ju X, Qu Z, Christie P, Lu Y. Response of nitrous oxide and corresponding bacteria to managements in an agricultural soil. Soil Biol Biochem. 2012;76:130–41.

    CAS 

    Google Scholar 

  • 86.

    Ahemad M, Kibret M. Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci. 2014;26:1–20.

    Article 

    Google Scholar 

  • 87.

    Schwarzott D, Walker C, Schüßler A. Glomus, the largest genus of the arbuscular mycorrhizal fungi (Glomales), is nonmonophyletic. Mol Phylogenet Evol. 2001;21:190–7.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 88.

    Harman GE, Howell CR, Viterbo A, Chet I, Lorito M. Trichoderma species – opportunistic, avirulent plant symbionts. Nat Rev Microbiol. 2004;2:43–56.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 89.

    Waqas M, Khan AL, Hamayun M, Shahzad R, Kang SM, Kim JG, et al. Endophytic fungi promote plant growth and mitigate the adverse effects of stem rot: an example of Penicillium citrinum and Aspergillus terreus. J. Plant Interact. 2015;10:280–7.

    CAS 
    Article 

    Google Scholar 

  • 90.

    Könneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB, Stahl DA. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature. 2005;437:543–6.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 91.

    Kozlowski TT. Soil compaction and growth of woody plants. Scand J For Res. 1999;14:596–619.

    Article 

    Google Scholar 

  • 92.

    Haggett KD, Gray PP, Dunn NW. Crystalline cellulose degradation by a strain of Cellulomonas and its mutant derivatives. Eur J Appl Microbiol Biotechnol. 1979;8:183–90.

    CAS 
    Article 

    Google Scholar 

  • 93.

    Rivas R, Trujillo ME, Mateos PF, Martínez-Molina E, Velázquez E. Agromyces ulmi sp. nov., xylanolytic bacterium isolated from Ulmus nigra in Spain. Int J Syst Evol Microbiol. 2004;54:1987–90.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 94.

    Štursová M, Žifčáková L, Leigh MB, Burgess R, Baldrian P. Cellulose utilization in forest litter and soil: identification of bacterial and fungal decomposers. FEMS Microbiol Ecol. 2012;80:735–46.

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 95.

    Brown AM, Howe DK, Wasala SK, Peetz AB, Zasada IA, Denver DR. Comparative genomics of a plant-parasitic nematode endosymbiont suggest a role in nutritional symbiosis. Genome Biol Evol. 2015;7:2727–46.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 96.

    Quandt CA, Beaudet D, Corsaro D, Walochnik J, Michel R, Corradi N, et al. The genome of an intranuclear parasite, Paramicrosporidium saccamoebae, reveals alternative adaptations to obligate intracellular parasitism. Elife. 2017;6:1–19.

    Article 

    Google Scholar 

  • 97.

    Brussaard L, van Faassen, HG. Effects of compaction on soil biota and soil biological processes. In: Soane BD, van Ouwerkerk C. Soil compaction in crop production. Elsevier; 1994. 11, p. 215–35.

  • 98.

    Shestak CJ, Busse MD. Compaction alters physical but not biological indices of soil health. Soil Sci Soc Am J. 2005;69:236.

    CAS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Using the IUCN Red List to map threats to terrestrial vertebrates at global scale

    Making the case for hydrogen in a zero-carbon economy