in

Limited thermal plasticity may constrain ecosystem function in a basally heat tolerant tropical telecoprid dung beetle, Allogymnopleurus thalassinus (Klug, 1855)

  • 1.

    Intergovernmental Panel on Climate Change (IPCC). Climate Change 2014: Synthesis Report (Intergovernmental Panel on Climate Change, Geneva) p 52 (2014). https://www.ipcc.ch/report/ar5/wg2/

  • 2.

    Easterling, D. R., Meehl, G. A., Parmesan, C., Karl, T. R. & Mearns, L. O. Climate extremes: Observations, modelling and impacts. Science 5487, 2068–2074 (2000).

    ADS 

    Google Scholar 

  • 3.

    Intergovernmental Panel on Climate Change (IPCC). Climate Change 2007: Synthesis Report (Intergovernmental Panel on Climate Change, Geneva) p 52 (2007). https://www.ipcc.ch/report/ar5/syr/

  • 4.

    Ju, R. T., Zhu, H. Y., Gao, L., Zhu, X. H. & Li, B. Increase in both temperature means, and extremes likely facilitates invasive herbivore outbreaks. Sci. Rep. 5, 15715. https://doi.org/10.1038/srep15715 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 5.

    World Meteorological Organisation (WMO). State of the Climate in Africa. WMO-No. 1253. 2020. Available at: https://library.wmo.int/doc_num.php?explnum_id=10421. Accessed 12 September 2021.

  • 6.

    Dube, O. P. Impact of climate change vulnerability and adaptation options: Exploring the case for Botswana through Southern Africa: A review. Botswana Notes Rec. 35, 147–168 (2003).

    Google Scholar 

  • 7.

    Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl Acad. Sci. 105, 6668–6672 (2008).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 8.

    Perkins-Kirkpatrick, S. E. & Lewis, S. C. Increasing trends in regional heatwaves. Nat. Commun. 11, 3357. https://doi.org/10.1038/s41467-020-16970-7(2020).

  • 9.

    National Oceanic and Atmospheric Administration (NOAA). Astounding heat obliterates all-time records across the Pacific Northwest and Western Canada in June 2021. Climate. Gov. Science and Information for Climate smart Nation. Available at: https://www.climate.gov/news-features/event-tracker/astounding-heat-obliterates-all-time-records-across-pacific-northwest. Accessed 03 July, 2021.

  • 10.

    UK Met Office. Record breaking Heat wave, July 2019. (2020). Available at: https://www.metoffice.gov.uk/binaries/content/assets/metofficegovuk/pdf/weather/learn-about/uk-past-events/interesting/2019/2019_007_july_heatwave.pdf. Accessed 10 June, 2021.

  • 11.

    Kendon, M. et al. State of the UK Climate 2019. Int. J. Climatol. 40, 1–69 (2020).

    Google Scholar 

  • 12.

    Head, L., Adams, M., McGregor, H. V. & Toole, S. Climate change and Australia. Wiley Interdiscipl. Rev. WIREs Clim. Change 5, 175–197 (2014).

    Google Scholar 

  • 13.

    Nangombe, S. et al. Record-breaking climate extremes in Africa under stabilized 1.5 °C and 2 °C Global warming scenarios. Nat. Clim. Change 8, 375–380 (2018).

  • 14.

    Gergis, J., Ashcroft, L. & Whetton, P. A. historical perspective on Australian temperature extremes. Clim. Dyn. 55, 843–868 (2020).

    Google Scholar 

  • 15.

    Carpaneto, G. M., Mazziotta, A. & Valerio, L. Inferring species decline from collection records: roller dung beetles in Italy (Coleoptera, Scarabaeidae). Divers. Distrib. 13, 903–919 (2007).

    Google Scholar 

  • 16.

    Walther, G. R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 17.

    Chown, S. L. & Nicolson, S. W. Insect Physiological Ecology: Mechanisms and Patterns (Oxford University Press, 2004).

    Google Scholar 

  • 18.

    Huey, R. B. & Kearney, M. R. Dynamics of death by heat. Science 369, 1163. https://doi.org/10.1126/science.abe0320 (2020).

    CAS 
    Article 
    PubMed 
    ADS 

    Google Scholar 

  • 19.

    Jørgensen, L. B. et al. A unifying model to estimate thermal tolerance limits in ectotherms across static, dynamic and fluctuating exposures to thermal stress. Sci. Rep. 11, 12840. https://doi.org/10.1038/s41598-021-92004-6 (2021)

  • 20.

    Buyantuyev, A. & Wu, J. Urban heat islands and landscape heterogeneity: Linking spatiotemporal variations in surface temperatures to land-cover and socioeconomic patterns. Landsc. Ecol. 25, 17–33 (2010).

    Google Scholar 

  • 21.

    Aalto, J., Riihimäki, H., Meineri, E., Hylander, K. & Luoto, M. Revealing topoclimatic heterogeneity using meteorological station data. Int. J. Climatol. 37, 544–556 (2017).

    Google Scholar 

  • 22.

    Holley, J. M. & Andrew, N. R. Experimental warming alters the relative survival and emigration of two dung beetle species from an Australian dung pat community. Austral. Ecol. 44, 800–811 (2019).

    Google Scholar 

  • 23.

    Giannini, T. C. et al. Pollination services at risk: Bee habitats will decrease owing to climate change in Brazil. Ecol. Model. 244, 127–131 (2012).

    Google Scholar 

  • 24.

    Wu, X. W. & Sun, S. C. Artificial warming advances egg laying and decreases larval size in the dung beetle, Aphodius erractus (Coleoptera: Scarabaeidae) in a Tibetan alpine meadow. Ann. Zool. Fennici. 49, 174–181 (2012).

    Google Scholar 

  • 25.

    Mamantov, M. A. & Sheldon, K. S. Behavioural responses to warming differentially impact survival in introduced and native dung beetles. J. Anim. Ecol. 90, 273–281 (2021).

    PubMed 

    Google Scholar 

  • 26.

    Clusella-Trullas, S., Blackburn, T. N. & Chown, S. L. Climate predictors of temperature performance curves parameters in ectotherms. Am. Nat. 177, 738–751 (2011).

    PubMed 

    Google Scholar 

  • 27.

    Ma, G., Rudolf, V. H. & Ma, C. S. Extreme temperature events alter demographic rates, relative fitness and community structure. Glob. Change Biol. 21, 1794–1808 (2014).

    ADS 

    Google Scholar 

  • 28.

    Gunderson, A. R. & Stillman, J. H. Plasticity in thermal tolerance has limited potential to buffer ectotherms from global warming. Proc. R. Soc. B 282, 20150401. https://doi.org/10.1098/rspb.2015.0401 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    van Heerwaarden, B., Kellermann, V. & Sgrò, C. M. Limited scope for plasticity to increase upper thermal limits. Funct. Ecol. 30, 1947–1956 (2016).

    Google Scholar 

  • 30.

    Nyamukondiwa, C., Terblamche, J. S., Marshall, K. E. & Sinclair, B. K. Basal cold but not heat tolerance constrains plasticity among Drosophila species (Diptera: Drosophilidae). J. Evol. Biol. 24, 1927–1938 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 31.

    Blackburn, S., van Heerwaarden, B., Kellermann, V. & Sgró, C. M. Evolutionary capacity of upper thermal limits: Beyond single trait assessments. J. Exp. Biol. 217, 1918–1924 (2014).

    PubMed 

    Google Scholar 

  • 32.

    Bowler, K. & Terblanche, J. S. Insect thermal tolerance: What is the role of ontogeny, ageing and senescence?. Biol. Rev. Camb. Philos. Soc. 83, 339–355 (2008).

    PubMed 

    Google Scholar 

  • 33.

    Barley, J. M., Cheng, B. S., Sasaki, M., Gignoux-Wolfsohn, S., Hays, C. G., Putnam, A. B., Sheth, S., Villeneuve, A. R. & Kelly, M. Limited plasticity in thermally tolerant ectotherm populations: Evidence for a trade-off. Proc. R. Soc. B (2021). https://doi.org/10.1098/rspb.2021.0765.

  • 34.

    Sgrò, C. M., Terblanche, J. S. & Hoffmann, A. A. What can plasticity contribute to insect responses to climate change?. Annu. Rev. Entomol. 61, 433–451 (2016).

    PubMed 

    Google Scholar 

  • 35.

    Pincebourde, S. & Woods, H. A. There is plenty of room at the bottom: Microclimates drive insect vulnerability to climate change. Curr. Opin. Insect Sci. 41, 63–70 (2020).

    PubMed 

    Google Scholar 

  • 36.

    Woods, A., Pincebourde, S., Dillon, M. E. & Terblanche, J. S. Extended phenotypes: Buffers or amplifiers of climate change?. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2021.05.010 (2021).

    Article 
    PubMed 

    Google Scholar 

  • 37.

    Gunderson, A. R., Dillon, M. E. & Stillman, J. H. Estimating the benefits of plasticity in ectotherm heat tolerance under natural thermal variability. Funct. Ecol. 31, 1529–1539 (2017).

    Google Scholar 

  • 38.

    Esperk, T., Kjaersgaard, A., Walters, R. J., Berger, D. & Blanckenhorn, W. U. Plastic and evolutionary responses to heat stress in a temperate dung fly: Negative correlation between basal and induced heat tolerance?. J. Evol. Biol. 29, 900–915 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 39.

    Calosi, P., Bilton, D. T. & Spicer, J. I. Thermal tolerance, acclimatory capacity and vulnerability to global climate change. Biol. Lett. 4, 99–102 (2008).

    PubMed 

    Google Scholar 

  • 40.

    van Heerwaarden, B. & Kellermann, V. Does plasticity trade off with basal heat tolerance?. Trends Ecol. Evol. 35, 874–885 (2020).

    PubMed 

    Google Scholar 

  • 41.

    Malhi, Y., Franklin, J., Seddon, N., Solan, M., Turner, M. G., Field, C. B. & Knowlton, N. Climate change and ecosystems: threats, opportunities and solutions. Philos. Trans. R. Soc. B 375, 20190104. https://doi.org/10.1098/rstb.2019.0104 (2020).

  • 42.

    Stillman, J. H. Heat waves, the new normal: Summertime temperature extremes will impact animals, ecosystems, and human communities. Physiology 34, 86–100 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 43.

    Tewksbury, J. J., Huey, R. B. & Deutsch, C. A. Ecology—Putting the heat on tropical animals. Science 320, 1296–1297 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 44.

    Kelley, A. M. The role thermal physiology plays in species invasion. Conserv. Physiol. 10, 2. https://doi.org/10.1093/conphys/cou045 (2014).

    CAS 
    Article 

    Google Scholar 

  • 45.

    Mitchell, K. A., Sgró, C. M. & Hoffmann, A. A. Phenotypic plasticity in upper thermal limits is weakly related to Drosophila species distributions. Funct. Ecol. 25, 661–670 (2011).

    Google Scholar 

  • 46.

    Allen, J. L., Chown, S. L., Janion-Scheepers, C. & Clusella-Trullas, S. Interactions between rates of temperature change and acclimation affect latitudinal patterns of warming tolerance. Conserv. Physiol. 4, 1–14 (2020).

    Google Scholar 

  • 47.

    Edwards, P. B. & Aschenborn, H. H. Patterns of nesting and dung burial in onitis dung beetles: Implications for pasture productivity and fly control. J. Appl. Ecol. 24, 837–851 (1987).

    Google Scholar 

  • 48.

    Bertone, M. A., Green, J. T., Washburn, S. P., Poore, M. H. & Watson, D. W. The contribution of tunneling dung beetles to pasture soil nutrition. Forage Grazinglands https://doi.org/10.1094/FG-2006-0711-02-RS (2006).

    Article 

    Google Scholar 

  • 49.

    Yamada, D., Imura, O., Shi, K. & Shibuya, T. Effect of tunneler dung beetles on cattle dung decomposition, soil nutrients and herbage growth. Grassl. Sci. 53, 121–129 (2007).

    Google Scholar 

  • 50.

    Slade, E. M. & Roslin, T. Dung beetle species interactions and multifunctionality are affected by an experimentally warmed climate. Oikos 125, 1607–1616 (2016).

    Google Scholar 

  • 51.

    Yoshihara, Y. & Sato, S. The relationship between dung beetle species richness and ecosystem functioning. Appl. Soil Ecol. 88, 21–25 (2015).

    Google Scholar 

  • 52.

    Manning, P., Slade, E. M., Beynon, S. A. & Lewis, O. T. Functionally rich dung beetle assemblages are required to provide multiple ecosystem services. Agric. Ecosyst. Environ. 218, 87–94 (2016).

    Google Scholar 

  • 53.

    Milotić, T. et al. Functionally richer communities improve ecosystem functioning: Dung removal and secondary seed dispersal by dung beetles in the Western Palaearctic. J. Biogeogr. 46, 70–82 (2019).

    Google Scholar 

  • 54.

    Slade, E. M., Riutta, T., Roslin, T. & Tuomisto, H. L. The role of dung beetles in reducing greenhouse gas emissions from cattle farming. Sci. Rep. 6, 18140. https://doi.org/10.1038/srep1814 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 55.

    Penttilä, A. et al. Quantifying beetle-mediated effects on gas fluxes from dung pats. PLoS ONE 8, e71454. https://doi.org/10.1371/journal.pone.0071454 (2013).

    CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 56.

    Spector, S. Scarabaeine dung beetles (Coleoptera: Scarabaeidae: Scarabaeinae): An invertebrate focal taxon for biodiversity research and conservation. Coleopt. Bull. 5, 71–83 (2006).

    Google Scholar 

  • 57.

    Osberg, D. C., Hanrahan, S. A. & Doube, B.M. The spatial distribution of Allogymnopleurus thalassinus Klug and A. consocius (Pringuey) (Coleoptera: Scarabaeidae) in an area of mixed soil types in South Africa. J. Entomol. Soc. S. Afr. 55, 85–92 (1992).

  • 58.

    Global Biodiversity Information Facility (GBIF). Allogymnopleurus thalassinus (Klug. 1855) (2020) Available at: https://www.gbif.org/species/1093939. Online Database. Accessed 29 December, 2020.

  • 59.

    Doube, B. M. Dung beetles of Southern Africa. (In: Hanski, I & Cambefort, Y. eds, Chapter 8). In Dung beetle ecology 133–155 (Princeton University Press, Princeton, 2014).

  • 60.

    Janssens, A. Monographie des Gymnopleurides. Verhandelingen Koninklijk Natuurhistorisch Museum Belgie. Brussel, 2, 1–74 (1940).

  • 61.

    Gotcha, N., Machekano, H., Cuthbert, R. N. & Nyamukondiwa, C. Low-temperature tolerance in coprophagic beetle species (Coleoptera: Scarabaeidae): Implications for ecological services. Ecol. Entomol. https://doi.org/10.1111/een.13054 (2021).

  • 62.

    Gittings, T., Giller, P. S. & Stakelum, G. Dung decomposition in contrasting temperate pastures in relation to dung beetle and earthworm activity. Pedobiologia, 38, 455–474 (1994).

  • 63.

    Rosenlew, H. & Roslin, T. Habitat fragmentation and the functional efficiency of temperate dung beetles. Oikos 117, 1659–1666 (2008).

    Google Scholar 

  • 64.

    Mitchell, K. A. & Hoffmann, A. A. Thermal ramping rate influences evolutionary potential and species differences for upper thermal limits in Drosophila. Funct. Ecol. 24, 694–700 (2010).

    Google Scholar 

  • 65.

    Terblanche, J. S., Nyamukondiwa, C. & Kleynhans, E. Thermal variability alters climatic stress resistance and plastic responses in a globally invasive pest, the Mediterranean fruit fly (Ceratitis capitata). Entomol. Exp. Appl. 137, 304–315 (2010).

    Google Scholar 

  • 66.

    Janzen, D. H. Why mountain passes are higher in tropics. Am. Nat. 101, 233–249 (1967).

    Google Scholar 

  • 67.

    Somero, G. N. The physiology of climate change: How potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’. J. Exp. Biol. 213, 912–920 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • 68.

    Overgaard, J., Kristensen, T. N., Mitchell, K. A. & Hoffmann, A. A. Thermal tolerance in widespread and tropical Drosophila species: Does phenotypic plasticity increase with latitude?. Am. Nat. 178, S80–S96 (2011).

    PubMed 

    Google Scholar 

  • 69.

    Terblanche, J. S. et al. Ecologically relevant measures of tolerance to potentially lethal temperatures. J. Exp. Biol. 214, 3713–3725 (2011).

    PubMed 

    Google Scholar 

  • 70.

    Giménez Gómez, V.C., Verdú, J. R. & Zurita, G. A. Thermal niche helps to explain the ability of dung beetles to exploit disturbed habitats. Sci. Rep. 10, 13364. https://doi.org/10.1038/s41598-020-70284-8 (2020).

  • 71.

    Gotcha, N., Machekano, H., Cuthbert, R. N. & Nyamukondiwa, C. Heat tolerance may determine activity time in coprophagic beetle species (Coleoptera: Scarabaeidae). Insect Sci. https://doi.org/10.1111/1744-7917.12844 (2020).

    Article 
    PubMed 

    Google Scholar 

  • 72.

    Nyamukondiwa, C., Chidawanyika, F., Machekano, H., Mutamiswa, R., Sands, B., Mdigiswa, N. & Wall, R. Climate variability differentially impacts thermal fitness traits in three coprophagic beetle species. PLOS One 13(6), e0198610. https://doi.org/10.1371/journal.pone.0198610 (2018).

  • 73.

    Jumbam, K., Jackson, S., Terblanche, J. S., McGeoch, M. A. & Chown, S. Acclimation effects on critical and lethal thermal limits of workers of the Argentine ant, Linepithema humile. J. Insect Physiol. 54, 1008–1014 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 74.

    Dallas, H. F. & Rivers-Moore, N. A. Critical thermal maxima of aquatic macroinvertebrates: Towards identifying bioindicators of thermal alteration. Hydrobiologia 679, 61–76 (2012).

    Google Scholar 

  • 75.

    Gallego, B., Verdú, J. R. & Lobo, J. M. Comparative thermoregulation between different species of dung beetles (Coleoptera: Geotrupinae). J. Thermal Biol. 74, 84–91 (2018).

    Google Scholar 

  • 76.

    Qari, S. A. Thermal tolerance of the marine crab, Portunus pelagicus (Brachyura, Portunidae). Crustaceana 87, 827–833 (2014).

    Google Scholar 

  • 77.

    Azra, M. N., Mohamad, A., Hidir, A., Taufik, M., Abol-Munafi, A. B. & Ikhwanuddin, M. Critical thermal maxima of two species of intertidal crabs, Scylla olivacea and Thalamita crenata at different acclimation temperatures. Aquacul. Rep. 17, 100301. https://doi.org/10.1016/j.aqrep.2020.100301 (2020)

  • 78.

    Lutterschmidt, W. I. & Hutchison, V. H. The critical thermal maximum: History and critique. Can. J. Zool. 75, 1561–1574 (1997).

    Google Scholar 

  • 79.

    Käfer, H. et al. Insects 11, 197. https://doi.org/10.3390/insects11030197 (2020).

    Article 
    PubMed Central 

    Google Scholar 

  • 80.

    Gehring, W. J. & Wehner, R. Heat shock protein synthesis and thermotolerance in Cataglyphis, an ant from the Sahara desert. Proc Natl. Acad. Sci. 92, 2994–2998 (1995).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 81.

    Bishop, T. R., Robertson, M. P., Van Rensburg, B. & Parr, C. L. Coping with the cold: Minimum temperatures and thermal tolerances dominate the ecology of mountain ants. Ecol. Entomol. 42, 105–114 (2017).

    Google Scholar 

  • 82.

    Smolka, J. et al. Dung beetles use their dung ball as a mobile thermal refuge. Curr. Biol. 20, R863–R864. https://doi.org/10.1016/j.cub.2012.08.057 (2012).

    CAS 
    Article 

    Google Scholar 

  • 83.

    Terblanche, J. S., Deere, J. A., Clusella-Trullas, S., Janion, C. & Chown, S. L. Critical thermal limits depend on methodological context. Proc. R. Soc. B: Biol. Sci. 274, 2935–2943 (2007).

    Google Scholar 

  • 84.

    Chown, S. L., Jumbam, K. R., Sørensen, J. G. & Terblanche, J. S. Phenotypic variance, plasticity and heritability estimates of critical thermal limits depend on methodological context. Funct. Ecol. 23, 133–140 (2009).

    Google Scholar 

  • 85.

    Hoffmann, A. A., Sørensen, J. G. & Loeschcke, V. Adaptation of Drosophila to temperature extremes: bringing together quantitative and molecular approaches. J. Thermal Biol. 28, 175–216 (2003).

    Google Scholar 

  • 86.

    Pelster, B. & Burggren, W. W. Responses to environmental stressors in developing animals: Costs and benefits of phenotypic plasticity. In Development and environment (eds Burggren, W. & Dubansky, B.) (Springer, Cham, 2018).

    Google Scholar 

  • 87.

    Kristensen, T. N., Kjeldal, H., Schou, M. F. & Nielsen, J. L. Proteomic data reveal a physiological basis for costs and benefits associated with thermal acclimation. J. Exp. Biol. 219, 969–976 (2016).

    PubMed 

    Google Scholar 

  • 88.

    Chanthy, P., Martin, R. J., Gunning, R. V., & Andrew, N. R. The effects of thermal acclimation on lethal temperatures and critical thermal limits in the green vegetable bug, Nezara viridula (L.) (Hemiptera: Pentatomidae). Front. Physiol. 3, 465 https://doi.org/10.3389/fphys.2012.00465 (2012).

  • 89.

    Anthony, S. E., Buddle, C. M., Høye, T. T., Hein, N. & Sinclair, B. J. Thermal acclimation has limited effect on thermal tolerance of summer collected Arctic and sub-Arctic wolf spiders. Comp. Biochem. Physiol. Part A, Mol. Integr. Physiol. 257, 110974 (2021).

  • 90.

    Hofmann, G. & Somero, G. Evidence for protein damage at environmental temperatures: seasonal changes in levels of ubiquitin conjugates and hsp70 in the intertidal mussel Mytilus trossulus. J. Exp. Biol. 198, 1509–1518 (1995).

    CAS 
    PubMed 

    Google Scholar 

  • 91.

    Munang, R., Thiaw, I., Alverson, K., Liu, J. & Han, Z. The role of ecosystem services in climate change adaptation and disaster risk reduction. Curr. Opin. Environ. Sustain. 5, 47–52 (2013).

    Google Scholar 

  • 92.

    Department of Wildlife and National Parks (DWNP). Aerial census of animals in Botswana 2012 dry season. Gaborone, Republic of Botswana (2012).

  • 93.

    Braga, R. F., Korasaki, V., Andresen, E. & Louzada, J. Dung beetle community and functions along a habitat-disturbance gradient in the amazon: A rapid assessment of ecological functions associated to biodiversity. PLoS ONE 8, e57786. https://doi.org/10.1371/journal.pone.0057786 (2013).

    CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 94.

    Niino, M. et al. Diel flight activity and habitat preference of dung beetles (Coleoptera: Scarabaeidae) in Peninsular Malaysia. Raffles Bull. Zool. 62, 795–804 (2014).

    Google Scholar 

  • 95.

    Beetles of Africa. The Website for the Beetle Collector. Online database available at: http://www.beetlesofafrica.com (2021). Accessed 22 April, 2020.

  • 96.

    Mathur, V. & Schmidt, P. S. Adaptive patterns of phenotypic plasticity in laboratory and field environments in Drosophila melanogaster. Evol. 71, 465–474 (2017).

    Google Scholar 

  • 97.

    Chidawanyika, F., Nyamukondiwa, C., Strathie, L., Fischer, K. Effects of thermal regimes, starvation and age on heat tolerance of the Parthenium Beetle Zygogramma bicolorata (Coleoptera: Chrysomelidae) following dynamic and static protocols. PLoS ONE 12(1), e0169371. https://doi.org/10.1371/journal.pone.0169371 (2017).

  • 98.

    Moretti, M. et al. Handbook of protocols for standardized measurement of terrestrial invertebrate functional traits. Funct. Ecol. 31, 558–567 (2017).

    Google Scholar 

  • 99.

    El-Saadi, M. I., Ritchie, M. W., Davis, H. E. & MacMillan, H. A. Warm periods in repeated cold stresses protect Drosophila against iono-regulatory collapse, chilling injury, and reproductive deficits. J. Insect Physiol. 123, 104055. https://doi.org/10.1016/j.jinsphys.2020.104055 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 100.

    Morley, S. A., Peck, L. S., Sunday, J. M., Heiser, S. & Bates, A. E. Physiological acclimation and persistence of ectothermic species under extreme heat events. Glob. Ecol. Biogeogr. 28, 1018–1037 (2019).

    Google Scholar 

  • 101.

    Nyamukondiwa, C. & Terblanche, J. S. Within-generation variation of critical thermal limits in adult Mediterranean and Natal fruit flies Ceratitis capitata and Ceratitis rosa: Thermal history affects short-term responses to temperature. Physiol. Entomol. 35, 255–264 (2010).

    Google Scholar 

  • 102.

    Weldon, C. W., Terblanche, J. S. & Chown, S. L. Time-course for attainment and reversal of acclimation to constant temperature in two Ceratitis species. J. Thermal Biol. 36, 479–485 (2011).

    Google Scholar 

  • 103.

    Sullivan, J. T., Ozman-Sullivan, S. K., Lumaret, J. P., Zalucki, M. P. & Baxter, G. Does one size suit all? Dung pad size and ball production by Scarabaeus sacer (Coleoptera: Scarabaeidae: Scarabaeinae). Eur. J. Entomol. 113, 70–75 (2016).

    Google Scholar 

  • 104.

    Nervo, B., Tocco, C., Caprio, C., Palestrini, C. & Rolando, A. Effects of body mass on dung removal efficiency in dung beetles. PLoS ONE 9, e107699. https://doi.org/10.1371/journal.pone.0107699 (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 105.

    Slade, E. M., Mann, D. J., Villanueva, J. M. & Lewis, O. T. Experimental evidence for the effects of dung beetle functional group richness and composition on ecosystem function in a tropical forest. J. Anim. Ecol. 76, 1094–1104 (2007).

    PubMed 

    Google Scholar 

  • 106.

    R Core Team. R: A Language and environment for Statistical computing. R Foundation for Statistical computing, Vienna, Austria. 2021. Available at: https://www.R-project.org/.

  • 107.

    Wobbrock, J. O., Findlater, L., Gergle, D. & Higgins, J. J. The aligned rank transform for nonparametric factorial analyses using only ANOVA procedures, in Proceedings of the ACM Conference on Human Factors in Computing Systems (CHI ’11). Vancouver, British Columbia (May 7–12, 2011) 143–146 (ACM Press, New York, 2011).

  • 108.

    Elkin, L. A., Kay, M., Higgins, J. & Wobbrock, J. O. An aligned rank transform procedure for multifactor contrast tests, in Proceedings of the ACM Symposium on User Interface Software and Technology (UIST ’21). Virtual Event (October 10–13, 2021) (ACM Press, New York, NY, 2021).


  • Source: Ecology - nature.com

    Decreased resting and nursing in short-finned pilot whales when exposed to louder petrol engine noise of a hybrid whale-watch vessel

    MIT makes strides on climate action plan