in

Limnological response from high-altitude wetlands to the water supply in the Andean Altiplano

  • 1.

    Tapia, J., Audry, S., Townley, B. & Duprey, J. L. Geochemical background, baseline and origin of contaminants from sediments in the mining-impacted Altiplano and Eastern Cordillera of Oruro, Bolivia. Geochemistry 12, 3–20. https://doi.org/10.1144/1467-7873/10-RA-049 (2012).

    CAS 
    Article 

    Google Scholar 

  • 2.

    Sarricolea, E. P. & Romero, H. Variabilidad y cambios climáticos observados y esperados en el Altiplano del norte de Chile. Revista de Geografía Norte Grande. 62, 169–183 (2015).

    Article 

    Google Scholar 

  • 3.

    Garreaud, R., Vuille, M. & Clement, C. A. The climate of the Altiplano: observed current conditions and mechanisms of past changes. Palaeogeogr. Palaeoclimatol. Palaeoecol. 194(1–3), 5–22. https://doi.org/10.1016/S0031-0182(03)00269-4 (2003).

    Article 

    Google Scholar 

  • 4.

    Vuille, M. & Keiming, F. Interannual variability of summertime convective cloudiness and precipitation in the central andes derived from ISCCP-B3 data. J. Clim. 17(17), 3334–3348. https://doi.org/10.1175/15200442(2004)017%3c3334:IVOSCC%3e2.0.CO;2 (2004).

    ADS 
    Article 

    Google Scholar 

  • 5.

    Cerveny, R. Present climates of South America. In Climates of the Southern Continents: Present, Past and Future (ed. Hobbs, J. E.) 107–135 (Wiley, Chichester, 1998).

    Google Scholar 

  • 6.

    Garreaud, R. & Aceituno, P. Interannual rainfall variability over the South American Altiplano. J. Clim. 14(12), 2779–2789. https://doi.org/10.1175/1520-0442(2001)014%3c2779:IRVOTS%3e2.0.CO;2 (2001).

    ADS 
    Article 

    Google Scholar 

  • 7.

    Coronel, J., Declerck, S. & Brendonck, L. High-altitude peatland temporary pools in Bolivia house a high cladoceran diversity. Wetlands 27(4), 1166–1174. https://doi.org/10.1672/0277-5212(2007)27[1166:HPTPIB]2.0.CO;2 (2007).

    Article 

    Google Scholar 

  • 8.

    Dorador, C., Vila, I., Witzel, K. P. & Imhoff, J. F. Bacterial and archaeal diversity in high altitude wetlands of the Chilean Altiplano. Fundam. Appl. Limnol. 182(2), 135–159. https://doi.org/10.1127/1863-9135/2013/0393 (2013).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Garcia, E. & Otto, M. Caracterización ecohidrológica de humedales alto andinos usando imágenes de satélite multitemporales en la cabecera de cuenca del río Santa, Ancash, Perú. Ecología Aplicada 14(2), 115–125 (2013).

    Google Scholar 

  • 10.

    Buytaert, W., Camacho, F. C. & Tobón, C. Potential impacts of climate change on the environmental services of humid tropical alpine regions. Glob. Ecol. Biogeogr. 20(1), 19–33. https://doi.org/10.1111/j.1466-8238.2010.00585.x (2011).

    Article 

    Google Scholar 

  • 11.

    Hribljan, J. A. et al. Carbon storage and long-term rate of accumulation in high-altitude Andean peatlands of Bolivia. Mires Peat 15(12), 1–14 (2015).

    Google Scholar 

  • 12.

    Yager, K. et al. Dimensiones socioecológicas del cambio del paisaje pastoral andino: puente entre el conocimiento ecológico tradicional y el análisis de imágenes satelitales en Sajama Parque Nacional, Bolivia. Cambio ambiental regional 17, 27–37 (2019).

    Google Scholar 

  • 13.

    Urrutia, R. & Vuille, M. Climate change projections for the tropical Andes using a regional climate model: temperature and precipitation simulations for the end of the 21st century. J. Geophys. Res. 114, D02108. https://doi.org/10.1029/2008JD011021 (2009).

    ADS 
    Article 

    Google Scholar 

  • 14.

    Buytaert, W. et al. Uncertainties in climate change projections and regional downscaling in the tropical Andes: implications for water resources management. Hydrol. Earth. Syst. Sci. 14, 1247–1258. https://doi.org/10.5194/hess-14-1247-2010 (2010).

    ADS 
    Article 

    Google Scholar 

  • 15.

    Rabatel, A. et al. Current state of glaciers in the tropical Andes: a multi-century perspective on glacier evolution and climate change. Cryosphere 7, 81–102. https://doi.org/10.5194/tc-7-81-2013 (2013).

    ADS 
    Article 

    Google Scholar 

  • 16.

    Prieto, G. et al. A mass sacrifice of children and camelids at the Huanchaquito-Las Llamas site, Moche Valley, Peru . PLoS ONE 14(3), e0211691. https://doi.org/10.1371/journal.pone.0211691 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 17.

    Babidge, S., Kalazich, F., Prieto, M. & Yager, K. That’s the problem with that lake; it changes sides’: mapping extraction and ecological exhaustion in the Atacama. J. Political Ecol. 26(1), 738–760. https://doi.org/10.2458/v26i1.23169 (2019).

    Article 

    Google Scholar 

  • 18.

    Prieto, M., Fragkou, M. & Calderón, M. Water policy and management in Chile. In The Wiley Encyclopedia of Water: Science, Technology, and Society (ed. Strickland, C.) 2589–2600 (Wiley, New York, 2020).

    Google Scholar 

  • 19.

    Fritz, S. C., Baker, P. A., Tapia, P., Spanbauer, T. & Westover, K. Evolution of the Lake Titicaca basin and its diatom flora over the last 370,000 years. Palaeogeogr. Palaeoclim. Palaeoecol. 317–318, 93–103 (2012).

    ADS 
    Article 

    Google Scholar 

  • 20.

    Cohen, S. C. Scientific drilling and biological evolution in ancient lakes: lessons learned and recommendations for the future. Hydrobiologia 682(1), 3–25. https://doi.org/10.1007/s10750-010-0546-7 (2012).

    CAS 
    Article 

    Google Scholar 

  • 21.

    Tapia, P. M., Fritz, S. C., Baker, P. A., Seltzer, G. A. & Dunbar, R. B. A Late Quaternary diatom record of tropical climatic history from Lake Titicaca (Peru and Bolivia). Palaeogeogr. Palaeoclimatol. Palaeoecol. 194, 1–3. https://doi.org/10.1016/S0031-0182(03)00275-X (2003).

    Article 

    Google Scholar 

  • 22.

    Vining, B. R., Steinman, B. A., Abbott, M. B. & Woods, A. Paleoclimatic and archaeological evidence from Lake Suches for highland Andean refugia during the arid middle-Holocene. The Holocene 29(2), 328–344. https://doi.org/10.1177/0959683618810405 (2019).

    ADS 
    Article 

    Google Scholar 

  • 23.

    Fritz, S. C., Baker, P. A., Tapia, P. & Garland, J. Spatial and temporal variation in cores from Lake Titicaca, Bolivia/Peru during the last 13,000 years. Quat. Int. 158(1), 23–29. https://doi.org/10.1016/j.quaint.2006.05.014 (2006).

    Article 

    Google Scholar 

  • 24.

    Hernández, A. et al. Biogeochemical processes controlling oxygen and carbon isotopes of diatom silica in Late Glacial to Holocene lacustrine rhythmites. Palaeogeogr. Palaeoclimatol. Palaeoecol. 299(3–4), 413–425. https://doi.org/10.1016/j.palaeo.2010.11.020 (2012).

    Article 

    Google Scholar 

  • 25.

    Placzek, C. et al. Climate in the dry central Andes over Geologic, millennial, and interannual timescales. Ann. Mo. Bot. Gard. 96(3), 386–397. https://doi.org/10.3417/2008019 (2009).

    Article 

    Google Scholar 

  • 26.

    Cerda, M. et al. A new 20th century lake sedimentary record from the Atacama Desert/Chile reveals persistent PDO (Pacific Decadal Oscillation) impact. J. S. Am. Earth Sci. 95, 102302. https://doi.org/10.1016/j.jsames.2019.102302 (2019).

    Article 

    Google Scholar 

  • 27.

    Aránguiz-Acuña, A. et al. Aquatic community structure as sentinel of recent environmental changes unraveled from lake sedimentary records from the Atacama Desert, Chile . PLoS ONE 15(2), e0229453. https://doi.org/10.1371/journal.pone.0229453 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 28.

    Flores-Varas, A. et al. Ascotán and Carcote salt flats as sensors of humidity fluctuations and anthropic impacts in the transition zone of the Andean Altiplano. J. S. Am. Earth Sci. 105, 102934. https://doi.org/10.1016/j.jsames.2020.102934 (2021).

    CAS 
    Article 

    Google Scholar 

  • 29.

    Maher, B. A. & Taylor, R. M. Formation of ultrafine-grained magnetite in soils. Nature 336, 368–370 (1988).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 30.

    Dearing, J. A. et al. Frequency-dependent susceptibility measurements of environmental materials. Geophys. J. Int. 124, 228–240. https://doi.org/10.1111/j.1365-246X.1996.tb06366.x (1996).

    ADS 
    Article 

    Google Scholar 

  • 31.

    Evans, M. & Heller, F. Environmental magnetism: principles and applications of enviromagnetics. Int. Geophys. 86, 202 (2003).

    Google Scholar 

  • 32.

    Pizarro, H. et al. The origin of the magnetic record in Eocene-Miocene coarse-grained sediments deposited in hyper-arid/arid conditions: examples from the Desert. Palaeogeogr. Palaeoclimatol. Palaeoecol. 516, 322–335. https://doi.org/10.1016/j.palaeo.2018.12.009 (2019).

    Article 

    Google Scholar 

  • 33.

    Risacher, F., Alonso, H. & Salazar, C. Geoquímica de Aguas en Cuencas cerradas: I, II y III Regiones-Chile. Volumen III Estudio de Cuencas de la II Región. (Convenio de Cooperación DGA-UCN-IRD. S.I.T. Nº51, 1999).

  • 34.

    Tapia, R. et al. Glacial differences of Southern Ocean Intermediate Waters in the Central South Pacific. Quat. Sci. Rev. 208, 105–117. https://doi.org/10.1016/j.quascirev.2019.01.016 (2019).

    ADS 
    Article 

    Google Scholar 

  • 35.

    Horne, D. J. Life-cycles of podocopid Ostracoda – a review (with particular reference to marine and brackish-water species). In Applications of Ostracoda. Proceedings of the Eighth International Symposium on Ostracoda (ed. Maddocks, R.) 581–590 (University of Houston, Texas, 1983).

    Google Scholar 

  • 36.

    Cohen, A. C. & Morin, J. G. Patterns of reproduction in ostracodes; a review. J. Crust. Biol. 10(2), 184–211. https://doi.org/10.2307/1548480 (1990).

    Article 

    Google Scholar 

  • 37.

    Mesquita-Joanes, F., Smith, A. J. & Viehberg, F. A. The ecology of ostracoda across levels of biological organization from individual to ecosystem. J. Quat. Sci. 17, 15–35. https://doi.org/10.1016/B978-0-444-53636-5.00002-0 (2012).

    Article 

    Google Scholar 

  • 38.

    McLay, C. L. The population biology of Cyprinotus carolinensis and Herpetocypris reptans (Crustacea, Ostracoda). Can. J. Zool. 56(5), 1170–1179. https://doi.org/10.1139/z78-161 (1978).

    ADS 
    Article 

    Google Scholar 

  • 39.

    Hamouda, S. A., Sames, B., Mohammed, A. & Bensalah, M. First record of non-marine ostracods from the Paleogene “hamadian deposits” of Méridja area, west of Bechar (southwestern Algeria). Annales de Paléontologie 104(1), 27–44. https://doi.org/10.1016/j.annpal.2017.12.001 (2018).

    Article 

    Google Scholar 

  • 40.

    Bergue, C. T., Maranhao, M. D. S. A. S. & Fauht, G. Paleolimnological inferences based on Oligocene ostracods (Crustacea: Ostracoda) from Tremembé Formation. Southeast Brazil. An. Acad. Bras. Cienc. 87(3), 1531–1544. https://doi.org/10.1590/0001-3765201520140366 (2015).

    Article 
    PubMed 

    Google Scholar 

  • 41.

    Sylvestre, F., Servant-Vildary, S. & Roux, M. Diatom-based ionic concentration and salinity models from the south Bolivian Altiplano (15–23°S). J. Paleolimnol. 25, 279–295 (2001).

    ADS 
    Article 

    Google Scholar 

  • 42.

    Nunnery, J. A., Fritz, S. C., Baker, P. A. & Selenbien, W. Lake-level variability in Salar de Coipasa, Bolivia during the past 40,000 yr. Quat. Res. https://doi.org/10.1017/qua.2018.108 (2018).

    Article 

    Google Scholar 

  • 43.

    Herrera, C. et al. Investigaciones hidrogeológicas en la laguna Tuyajto perteneciente a la Reserva Nacional de los Flamencos (Atacama, Chile). Bol. Geol. Min. 130(4), 789–806. https://doi.org/10.21701/bolgeomin.130.4.011 (2019).

    Article 

    Google Scholar 

  • 44.

    Houston, J. Variability of precipitation in the Atacama Desert: its causes and hydrological impact. Q. J. R. Meteorol. Soc. 26(15), 2181–2198. https://doi.org/10.1002/joc.1359 (2006).

    Article 

    Google Scholar 

  • 45.

    Herrera, C. et al. Groundwater flow in a closed basin with a saline shallow lake in a volcanic area: Laguna Tuyajto, northern Chilean Altiplano of the Andes. Sci. Total Environ. 541, 303–318. https://doi.org/10.1016/j.scitotenv.2015.09.060 (2016).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 46.

    Munk, L. A., Boutt, D. F., Hynek, S. A. & Moran, B. J. Hydrogeochemical fluxes and processes contributing to the formation of lithium-enriched brines in a hyper-arid continental basin. Chem. Geol. 493, 37–57. https://doi.org/10.1016/j.chemgeo.2018.05.013 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 47.

    Godfrey, L. & Álvarez-Amado, F. Volcanic and Saline Lithium Inputs to the Salar de Atacama. Minerals 10(2), 201. https://doi.org/10.3390/min10020201 (2020).

    CAS 
    Article 

    Google Scholar 

  • 48.

    Marazuela, M. A., Ayora, C., Vázquez-Suñé, E., Olivella, S. & García-Gil, A. Hydrogeological constraints for the genesis of the extreme lithium enrichment in the Salar de Atacama (NE Chile): A thermohaline flow modelling approach. Sci. Total Environ. 739, 139959. https://doi.org/10.1016/j.scitotenv.2020.139959 (2020).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 49.

    Bobst, A. L. et al. A 106 ka paleoclimate record from drill core of the Salar de Atacama, northern Chile. Palaeogeogr. Palaeoclimatol. Palaeoecol. 173(1–2), 21–42. https://doi.org/10.1016/S0031-0182(01)00308-X (2001).

    Article 

    Google Scholar 

  • 50.

    Baspineiro, C. F., Franco, J. & Flexer, V. Potential water recovery during lithium mining from high salinity brines. Sci. Total Environ. 720, 137523. https://doi.org/10.1016/j.scitotenv.2020.137523 (2020).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 51.

    Marazuela, M. A., Vázquez-Suñé, E., Ayora, C. & García-Gil, A. Towards more sustainable brine extraction in salt flats: Learning from the Salar de Atacama. Sci. Total Environ. 703, 135605. https://doi.org/10.1016/j.scitotenv.2019.135605 (2020).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 52.

    Babidge, S. Sustaining ignorance: the uncertainties of groundwater and its extraction in the Salar de Atacama, northern Chile. J. R. Anthropol. Inst. 25(1), 83–102. https://doi.org/10.1111/1467-9655.12965 (2018).

    Article 

    Google Scholar 

  • 53.

    Sonter, L. J., Dade, M. C., Watson, J. E. M. & Valenta, R. K. Renewable energy production will exacerbate mining threats to biodiversity. Nat. Commun. 11, 4174. https://doi.org/10.1038/s41467-020-17928-5 (2020).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 54.

    Stahl, A. T., Fremier, A. K. & Cosens, B. A. Mapping legal authority for terrestrial conservation corridors along streams. Conserv. Biol. 34(4), 943–955. https://doi.org/10.1111/cobi.13484 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 55.

    García, M., Prieto, M. & Kalazich, F. The protection of the mountain ecosystems of the Southern Central Andes: tensions between Aymara herding practices and conservation policies. Eco. Mont. 13(1), 22–30 (2021).

    Google Scholar 

  • 56.

    Vila, T. Geología de los depósitos salinos andinos, provincia de Antofagasta, Chile. Revista de Geología de Chile 2, 41–55 (1975).

    Google Scholar 

  • 57.

    CIREN. Catastro Agrícola, estudio de metodología para la realización y actualización de catastro agrícola regional en base a la utilización de tecnología geoespacial 1–35 (CCIRA, Atacama, 2013).

    Google Scholar 

  • 58.

    Villagrán, C., Kalin-Arroyo, M. T. & Marticorena, C. Efectos de la destización en la distribución de la flora andina de Chile. Rev. Chil. Hist. Nat. 56, 137–157 (1983).

    Google Scholar 

  • 59.

    CONAF. Actualización Plan de Manejo Participativo Reserva Nacional Los Flamencos, Region de Antofagasta (2008).

  • 60.

    Núñez, L., Grosjean, M. & Cartajena, I. Ocupaciones humanas y paleoambientes en la Puna de Atacama (Universidad Católica del Norte-Taraxacum, Antofagasta, 2005).

    Google Scholar 

  • 61.

    Los Ostracodos, M. P. VI. 4f. In El lago Titicaca, síntesis del conocimiento limnológico actual (eds Dejoux, C. & Iltis, A.) 345–352 (Orstom, New Caledonia, 1991).

    Google Scholar 

  • 62.

    Karanovic, I. Recent Freshwater Ostracods of the World, Crustacea, Ostracoda, Podocopida (Springer , Berlin, 2012).

    Google Scholar 

  • 63.

    Palacios-Fest, M. R., Cusminsky, G. C. & McGlue, M. M. Late Quaternary lacustrine ostracods (Ostracoda, Crustacea) and charophytes (Charophyta, Charales) from the Puna Plateau, Argentina. Micropaleontology 35, 66–78 (2016).

    Google Scholar 

  • 64.

    Brandão, S. N., Angel, M. V., Karanovic, I., Perrier, V. & Meidla, T. World Ostracoda Database. http://www.marinespecies.org/ostracoda/aphia.php?p=taxdetails&id=1091 on 2020–01–15 (2018).

  • 65.

    Fatela, F. & Taborda, R. Confidence limits of species proportions in microfossil assemblages. Mar. Micropaleontol. 45(2), 169–174. https://doi.org/10.1016/S0377-8398(02)00021-X (2002).

    ADS 
    Article 

    Google Scholar 

  • 66.

    Díaz, C. P. & Maidana, N. I. Diatomeas de los Salares Atacama y Punta Negra, II Región-Chile (Centro de Ecología Aplicada , La Reina, 2005).

    Google Scholar 

  • 67.

    Diatoms of North America. The source for diatom identification and ecology. https://diatoms.org (2019).

  • 68.

    Hammer, Ø. & Harper, D. Paleontological Data Analysis (Blackwell Publishing , Hoboken, 2006).

    Google Scholar 

  • 69.

    Oksanen, J. et al. vegan: Community Ecology Package. Ordination methods, diversity analysis and other functions for community and vegetation ecologists. Version 2.5–1. URL https://CRAN.R-project.org/package=vegan (2019).

  • 70.

    McArdle, B. H. & Anderson, M. J. Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82(1), 290–297. https://doi.org/10.1890/0012-9658(2001)082[0290:FMMTCD]2.0.CO;2 (2001).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Opportunities to improve China’s biodiversity protection laws

    Effects of sediment replenishment on riverbed environments and macroinvertebrate assemblages downstream of a dam