in

Linking functional traits and demography to model species-rich communities

  • 1.

    McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185 (2006).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 2.

    Violle, C. et al. Let the concept of trait be functional! Oikos 116, 882–892 (2007).

    Article 

    Google Scholar 

  • 3.

    Adler, P. B. et al. Functional traits explain variation in plant life history strategies. Proc. Natl. Acad. Sci. 111, 740–745 (2014).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 4.

    Pierce, S., Brusa, G., Vagge, I. & Cerabolini, B. E. Allocating C. S. R. plant functional types: the use of leaf economics and size traits to classify woody and herbaceous vascular plants. Funct. Ecol. 27, 1002–1010 (2013).

  • 5.

    Kattge, J. et al. TRY – a global database of plant traits. Glob. Change Biol. 17, 2905–2935 (2011).

    ADS 
    Article 

    Google Scholar 

  • 6.

    Kunstler, G. et al. Plant functional traits have globally consistent effects on competition. Nature 529, 204–207 (2016).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 7.

    Yang, J., Cao, M. & Swenson, N. G. Why functional traits do not predict tree demographic rates. Trends Ecol. Evol. 33, 326–336 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 8.

    Connolly, S. R., Keith, S. A., Colwell, R. K. & Rahbek, C. Process, mechanism, and modeling in macroecology. Trends Ecol. Evol. 32, 835–844 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 9.

    Dormann, C. F. et al. Correlation and process in species distribution models: bridging a dichotomy. J. Biogeogr. 39, 2119–2131 (2012).

    Article 

    Google Scholar 

  • 10.

    Thuiller, W., Pollock, L. J., Gueguen, M. & Münkemüller, T. From species distributions to meta-communities. Ecol. Lett. 18, 1321–1328 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 11.

    Zurell, D. et al. Benchmarking novel approaches for modelling species range dynamics. Glob. Change Biol. 22, 2651–2664 (2016).

    ADS 
    Article 

    Google Scholar 

  • 12.

    Alexander, J. et al. Lags in the response of alpine plant communities to climate change. Glob. Change Biol. 24, 563–579 (2018).

    ADS 
    Article 

    Google Scholar 

  • 13.

    Evans, M. E., Merow, C., Record, S., McMahon, S. M. & Enquist, B. J. Towards process-based range modeling of many species. Trends Ecol. Evol. 31, 860–871 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 14.

    Urban, M. C. et al. Improving the forecast for biodiversity under climate change. Science 353, aad8466 (2016).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 15.

    Paine, C. E. T., Deasey, Anna, Bradley, DuthieA. & Ken, Thompson Towards the general mechanistic prediction of community dynamics. Funct. Ecol. 32, 1681–1692 (2018).

    Article 

    Google Scholar 

  • 16.

    Hartig, F. et al. Connecting dynamic vegetation models to data–an inverse perspective. J. Biogeogr. 39, 2240–2252 (2012).

    Article 

    Google Scholar 

  • 17.

    Levins, R. The strategy of model building in population biology. Am. Sci. 54, 421–431 (1966).

    Google Scholar 

  • 18.

    Kraft, N. J., Godoy, O. & Levine, J. M. Plant functional traits and the multidimensional nature of species coexistence. Proc. Natl. Acad. Sci. 112, 797–802 (2015).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 19.

    Mayfield, M. M. & Stouffer, D. B. Higher-order interactions capture unexplained complexity in diverse communities. Nat. Ecol. Evol. 1, 0062 (2017).

    Article 

    Google Scholar 

  • 20.

    Carrara, F., Giometto, A., Seymour, M., Rinaldo, A. & Altermatt, F. Experimental evidence for strong stabilizing forces at high functional diversity of aquatic microbial communities. Ecology 96, 1340–1350 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 21.

    Laughlin, D. C. & Messier, J. Fitness of multidimensional phenotypes in dynamic adaptive landscapes. Trends Ecol. Evol. 30, 487–496 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 22.

    Curtsdotter, A. et al. Ecosystem function in predator–prey food webs—confronting dynamic models with empirical data. J. Anim. Ecol. 88, 196–210 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 23.

    Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).

  • 24.

    Terborgh, J. W. Toward a trophic theory of species diversity. Proc. Natl. Acad. Sci. 112, 11415–11422 (2015).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 25.

    Swenson, N. G. & Enquist, B. J. Ecological and evolutionary determinants of a key plant functional trait: wood density and its community-wide variation across latitude and elevation. Am. J. Bot. 94, 451–459 (2007).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 26.

    Körner, C. Alpine Plant Life. (Springer, 2003).

  • 27.

    Westoby, M. A leaf-height-seed (LHS) plant ecology strategy scheme. Plant Soil 199, 213–227 (1998).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Adler, P. B. et al. Competition and coexistence in plant communities: intraspecific competition is stronger than interspecific competition. Ecol. Lett. 21, 1319–1329 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 29.

    Chalmandrier, L., Albouy, C. & Pellissier, L. Species pool distributions along functional trade-offs shape plant productivity–diversity relationships. Sci. Rep. 7, 15405 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 30.

    Nagelkerke, N. J. A note on a general definition of the coefficient of determination. Biometrika 78, 691–692 (1991).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • 31.

    Gelman, A., Hwang, J. & Vehtari, A. Understanding predictive information criteria for Bayesian models. Stat. Comput. 24, 997–1016 (2014).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • 32.

    Godínez-Alvarez, H., Herrick, J. E., Mattocks, M., Toledo, D. & Van Zee, J. Comparison of three vegetation monitoring methods: Their relative utility for ecological assessment and monitoring. Ecol. Indic. 9, 1001–1008 (2009).

    Article 

    Google Scholar 

  • 33.

    Grime, J. P. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am. Nat. 111, 1169–1194 (1977).

    Article 

    Google Scholar 

  • 34.

    Reich, P. B. The world-wide ‘fast–slow’ plant economics spectrum: a traits manifesto. J. Ecol. 102, 275–301 (2014).

    Article 

    Google Scholar 

  • 35.

    de Bello, Fde et al. Hierarchical effects of environmental filters on the functional structure of plant communities: a case study in the French Alps. Ecography 36, 393–402 (2013).

    Article 

    Google Scholar 

  • 36.

    Dray, S. et al. Combining the fourth-corner and the RLQ methods for assessing trait responses to environmental variation. Ecology 95, 14–21 (2014).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 37.

    Violle, C. et al. Competition, traits and resource depletion in plant communities. Oecologia 160, 747–755 (2009).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 38.

    Michelsen, A., Schmidt, I. K., Jonasson, S., Quarmby, C. & Sleep, D. Leaf 15N abundance of subarctic plants provides field evidence that ericoid, ectomycorrhizal and non-and arbuscular mycorrhizal species access different sources of soil nitrogen. Oecologia 105, 53–63 (1996).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 39.

    Laughlin, D. C., Joshi, C., van Bodegom, P. M., Bastow, Z. A. & Fulé, P. Z. A predictive model of community assembly that incorporates intraspecific trait variation. Ecol. Lett. 15, 1291–1299 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 40.

    Laughlin, D. C. The intrinsic dimensionality of plant traits and its relevance to community assembly. J. Ecol. 102, 186–193 (2014).

    Article 

    Google Scholar 

  • 41.

    Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 42.

    Letten, A. D., Ke, P.-J. & Fukami, T. Linking modern coexistence theory and contemporary niche theory. Ecol. Monogr. 87, 161–177 (2017).

    Article 

    Google Scholar 

  • 43.

    O’Dwyer, J. P. Whence Lotka-Volterra? Theor. Ecol. 11, 441–452 (2019).

    Article 

    Google Scholar 

  • 44.

    Pichler, M., Boreux, V., Klein, A.-M., Schleuning, M. & Hartig, F. Machine learning algorithms to infer trait-matching and predict species interactions in ecological networks. Methods Ecol. Evol. 11, 281–293 (2020).

    Article 

    Google Scholar 

  • 45.

    Maestre, F. T., Callaway, R. M., Valladares, F. & Lortie, C. J. Refining the stress-gradient hypothesis for competition and facilitation in plant communities. J. Ecol. 97, 199–205 (2009).

    Article 

    Google Scholar 

  • 46.

    Damgaard, C. A critique of the space-for-time substitution practice in community ecology. Trends Ecol. Evol. 34, 416–421 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 47.

    Arnoldi, J.-F., Loreau, M. & Haegeman, B. The inherent multidimensionality of temporal variability: how common and rare species shape stability patterns. Ecol. Lett. 22, 1557–1567 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 48.

    May, R. M. Patterns of species abundance and diversity. in Ecology and Evolution of Communities (eds Cody, M. L. & Diamond, J. M.) 81–120 (Harvard University Press, 1975).

  • 49.

    Falster, D. S., Brännström, Å., Westoby, M. & Dieckmann, U. Multitrait successional forest dynamics enable diverse competitive coexistence. Proc. Natl. Acad. Sci. 114, E2719–E2728 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 50.

    Boulangeat, I., Georges, D. & Thuiller, W. FATE-HD: a spatially and temporally explicit integrated model for predicting vegetation structure and diversity at regional scale. Glob. Change Biol. 20, 2368–2378 (2014).

    Article 

    Google Scholar 

  • 51.

    Lischke, H. & Löffler, T. J. Finding all multiple stable fixpoints of n-species Lotka–Volterra competition models. Theor. Popul. Biol. 115, 24–34 (2017).

    PubMed 
    MATH 
    Article 
    PubMed Central 

    Google Scholar 

  • 52.

    Jamil, T., Ozinga, W. A., Kleyer, M. & ter Braak, C. J. Selecting traits that explain species–environment relationships: a generalized linear mixed model approach. J. Veg. Sci. 24, 988–1000 (2013).

    Article 

    Google Scholar 

  • 53.

    ter Braak, C. J. New robust weighted averaging-and model-based methods for assessing trait–environment relationships. Methods Ecol. Evol. 10, 1962–1971 (2019).

    Article 

    Google Scholar 

  • 54.

    Pielou, E. C. Ecological Diversity. (Wiley, New York, 1975).

  • 55.

    Gibert, A., Gray, E. F., Westoby, M., Wright, I. J. & Falster, D. S. On the link between functional traits and growth rate: meta-analysis shows effects change with plant size, as predicted. J. Ecol. 104, 1488–1503 (2016).

    Article 

    Google Scholar 

  • 56.

    Durand, Y. et al. Reanalysis of 44 Yr of climate in the French Alps (1958–2002): methodology, model validation, climatology, and trends for air temperature and precipitation. J. Appl. Meteorol. Climatol. 48, 429–449 (2009).

    ADS 
    Article 

    Google Scholar 

  • 57.

    Chalmandrier, L. et al. Spatial scale and intraspecific trait variability mediate assembly rules in alpine grasslands. J. Ecol. 105, 277–287 (2017).

    Article 

    Google Scholar 

  • 58.

    Cornelissen, J. H. C. et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust. J. Bot. 51, 335–380 (2003).

    Article 

    Google Scholar 

  • 59.

    Reich, P. B. et al. Generality of leaf trait relationships: a test across six biomes. Ecology 80, 1955–1969 (1999).

    Article 

    Google Scholar 

  • 60.

    Poorter, H. & Bergkotte, M. Chemical composition of 24 wild species differing in relative growth rate. Plant Cell Environ. 15, 221–229 (1992).

    CAS 
    Article 

    Google Scholar 

  • 61.

    Farquhar, G. D., O’leary, M. H. & Berry, J. A. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Funct. Plant Biol. 9, 121–137 (1982).

    CAS 
    Article 

    Google Scholar 

  • 62.

    Thioulouse, J. et al. Multivariate Analysis of Ecological Data with ade4. (Springer, 2018).

  • 63.

    Rapisarda, F., Brigo, D. & Mercurio, F. Parameterizing correlations: a geometric interpretation. IMA J. Manag. Math. 18, 55–73 (2007).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • 64.

    Blumenson, L. E. A derivation of n-dimensional spherical coordinates. Am. Math. Mon. 67, 63–66 (1960).

    MathSciNet 

    Google Scholar 

  • 65.

    Banner, K. M., Irvine, K. M. & Rodhouse, T. The use of bayesian priors in ecology: the good, the bad, and the not great. Methods Ecol. Evol. 00, 1–8 (2020).

    Google Scholar 

  • 66.

    Hartig, F., Minunno, F. & Paul, S. BayesianTools: General-Purpose MCMC and SMC samplers and tools for bayesian statistics. R package (2017).

  • 67.

    Warton, D. I. et al. So Many Variables: Joint Modeling in Community Ecology. Trends Ecol. Evol. 30, 766–779 (2015). 

  • 68.

    Pichler, M. & Hartig, F. A new method for faster and more accurate inference of species associations from novel community data. Preprint at https://arxiv.org/abs/2003.05331 (2020).

  • 69.

    Advanced Research Computing Center (ARCC). Teton Computing Environment. https://doi.org/10.15786/m2fy47 (2018).


  • Source: Ecology - nature.com

    Analytics platform for coastal desalination plants wins 2021 Water Innovation Prize

    Supplementation of Lactobacillus early in life alters attention bias to threat in piglets