in

Lipidomic profiling reveals biosynthetic relationships between phospholipids and diacylglycerol ethers in the deep-sea soft coral Paragorgia arborea

  • 1.

    Holcapek, M., Liebisch, G. & Elcroos, K. Lipidomic analysis. Anal. Chem. 90, 4249–4257. https://doi.org/10.1021/acs.analchem.7b05395 (2018).

    CAS 
    Article 

    Google Scholar 

  • 2.

    Schwudke, D., Shevchenko, A., Hoffmann, N. & Ahrends, R. Lipidomics informatics for life-science. J. Biotech. 261, 131–136. https://doi.org/10.1016/j.jbiotec.2017.08.010 (2017).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Hsu, F. F. Mass spectrometry-based shotgun lipidomics: A critical review from the technical point of view. Anal. Bioanal. Chem. 410, 6387–6409. https://doi.org/10.1007/s00216-018-1252-y (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 4.

    Hu, T. & Zhang, J. L. Mass-spectrometry-based lipidomics. J. Separ. Sci. 41, 351–372. https://doi.org/10.1002/jssc.201700709 (2018).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Tang, C. H., Lin, C. Y., Tsai, Y. L., Lee, S. H. & Wang, W. H. Lipidomics as a diagnostic tool of the metabolic and physiological state of managed whales: A correlation study of systemic metabolism. Zoo. Biol. 37, 440–451. https://doi.org/10.1002/zoo.21452 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 6.

    Li, X. B. et al. Targeted lipidomics profiling of marine phospholipids from different resources by UPLC-Q-Exactive Orbitrap/MS approach. J. Chromatog. B 1096, 107–112. https://doi.org/10.1016/j.jchromb.2018.08.018 (2018).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Monroig, O., Tocher, D. R. & Navarro, J. C. Biosynthesis of polyunsaturated fatty acids in marine invertebrates: Recent advances in molecular mechanisms. Mar. Drugs 11, 3998–4018. https://doi.org/10.3390/md11103998 (2013).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 8.

    Kharlamenko, V. I. & Odintsova, N. A. Unusual methylene-interrupted polyunsaturated fatty acids of abyssal and hadal invertebrates. Prog. Oceanog. 178, 102132. https://doi.org/10.1016/j.pocean.2019.102132 (2019).

    Article 

    Google Scholar 

  • 9.

    Rezanka, T., Kolouchova, I., Gharwalova, L., Palyzova, A. & Sigler, K. Lipidomic analysis: From Archaea to mammals. Lipids 53, 5–25. https://doi.org/10.1002/lipd.12001 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 10.

    Lavarias, S., Dreon, M. S., Pollero, R. J. & Heras, H. Changes in phosphatidylcholine molecular species in the shrimp Macrobrachium borellii in response to a water-soluble fraction of petroleum. Lipids 40, 487–494. https://doi.org/10.1007/s11745-005-1408-y (2005).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 11.

    Miniadis-Meimaroglou, S., Kora, L. & Sinanogiou, V. J. Isolation and identification of phospholipid molecular species in a wild marine shrimp Penaeus kerathurus muscle and cephalothorax. Chem. Phys. Lipids 152, 104–112. https://doi.org/10.1016/j.chemphyslip.2008.01.003 (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 12.

    Huang, M. X. et al. Growth and lipidomic responses of juvenile pacific white shrimp Litopenaeus vannamei to low salinity. Front. Physiol. https://doi.org/10.3389/fphys.2019.01087 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 13.

    Garofalaki, T. F., Miniadis-Meimaroglou, S. & Sinanoglou, V. J. Main phospholipids and their fatty acid composition in muscle and cephalothorax of the edible Mediterranean crustacean Palinurus vulgaris (spiny lobster). Chem. Phys. Lipids 140, 55–65. https://doi.org/10.1016/j.chemphyslip.2006.01.006 (2006).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 14.

    Rey, F. et al. Unravelling polar lipids dynamics during embryonic development of two sympatric brachyuran crabs (Carcinus maenas and Necora puber) using lipidomics. Sci. Rep. 5, 14549. https://doi.org/10.1038/srep14549 (2015).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 15.

    Rey, F., Alves, E., Domingues, P., Domingues, M. R. M. & Calado, R. A lipidomic perspective on the embryogenesis of two commercially important crabs, Carcinus maenas and Necora puber. Bull. Mar. Sci. 94, 1395–1411. https://doi.org/10.5343/bms.2017.1140 (2018).

    Article 

    Google Scholar 

  • 16.

    de Souza, L. M. et al. Glyco- and sphingophosphonolipids from the medusa Phyllorhiza punctata: NMR and ESI-MS/MS fingerprints. Chem. Phys. Lipids 145, 85–96 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 17.

    Zhu, S. et al. Lipid profile in different parts of edible jellyfish Rhopilema esculentum. J. Agric. Food Chem. 63, 8283–8291. https://doi.org/10.1021/acs.jafc.5b03145 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 18.

    Kostetsky, E. Y., Sanina, N. M. & Velansky, P. V. The thermotropic behavior and major molecular species composition of the phospholipids of echinoderms. Russ. J. Mar. Biol. 40, 131–139. https://doi.org/10.1134/s1063074014020059 (2014).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Yin, F. W. et al. Identification of glycerophospholipid molecular species of mussel (Mytilus edulis) lipids by high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry. Food Chem. 213, 344–351. https://doi.org/10.1016/j.foodchem.2016.06.094 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 20.

    Chen, Q. S. et al. Mechanism of phospholipid hydrolysis for oyster Crassostrea plicatula phospholipids during storage using shotgun lipidomics. Lipids 52, 1045–1058. https://doi.org/10.1007/s11745-017-4305-7 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 21.

    Liu, Z. Y. et al. Characterization of glycerophospholipid molecular species in six species of edible clams by high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry. Food Chem. 219, 419–427. https://doi.org/10.1016/j.foodchem.2016.09.160 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 22.

    Chan, C. Y. & Wang, W. X. A lipidomic approach to understand copper resilience in oyster Crassostrea hongkongensis. Aquatic Toxicol. 204, 160–170. https://doi.org/10.1016/j.aquatox.2018.09.011 (2018).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Facchini, L., Losito, I., Cataldi, T. R. I. & Palmisano, F. Seasonal variations in the profile of main phospholipids in Mytilus galloprovincialis mussels: A study by hydrophilic interaction liquid chromatography-electrospray ionization Fourier transform mass spectrometry. J. Mass Spectrom. 53, 1–20. https://doi.org/10.1002/jms.4029 (2018).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 24.

    Tran, Q. T. et al. Fatty acid, lipid classes and phospholipid molecular species composition of the marine clam Meretrix lyrata (Sowerby 1851) from Cua Lo Beach, Nghe An Province, Vietnam. Molecules https://doi.org/10.3390/molecules24050895 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 25.

    Wu, Z. X. et al. Lipid profile and glycerophospholipid molecular species in two species of edible razor clams Sinonovacula constricta and Solen gouldi. Lipids 54, 347–356. https://doi.org/10.1002/lipd.12153 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 26.

    Zhang, Y. Y. et al. Evaluation of lipid profile in different tissues of Japanese abalone Haliotis discus hannai Ino with UPLC-ESI-Q-TOF-MS-based lipidomic study. Food Chem. 265, 49–56. https://doi.org/10.1016/j.foodchem.2018.05.077 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 27.

    Rey, F. et al. Coping with starvation: Contrasting lipidomic dynamics in the cells of two sacoglossan sea slugs incorporating stolen plastids from the same macroalga. Integr. Comp. Biol. 60, 43–56. https://doi.org/10.1093/icb/icaa019 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 28.

    Imbs, A. B. & Grigorchuk, V. P. Lipidomic study of the influence of dietary fatty acids on structural lipids of cold-water nudibranch molluscs. Sci. Rep. 9, 20013. https://doi.org/10.1038/s41598-019-56746-8 (2019).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Gold, D. A. et al. Lipidomics of the sea sponge Amphimedon queenslandica and implication for biomarker geochemistry. Geobiol. 15, 836–843. https://doi.org/10.1111/gbi.12253 (2017).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Imbs, A. B., Dang, L. P. T. & Nguyen, K. B. Comparative lipidomic analysis of phospholipids of hydrocorals and corals from tropical and cold-water regions. PLoS ONE 14, e0215759. https://doi.org/10.1371/journal.pone.0215759 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 31.

    Imbs, A. B., Ermolenko, E. V., Grigorchuk, V. P. & Dang, L. T. P. Seasonal variation in the lipidome of two species of Millepora hydrocorals from Vietnam coastal waters (the South China Sea). Coral Reefs 40, 719–734. https://doi.org/10.1007/s00338-021-02073-2 (2021).

    Article 

    Google Scholar 

  • 32.

    Sogin, E. M., Putnam, H. M., Anderson, P. E. & Gates, R. D. Metabolomic signatures of increases in temperature and ocean acidification from the reef-building coral, Pocillopora damicornis. Metabolomics 12, 71 (2016).

    Article 

    Google Scholar 

  • 33.

    Tang, C. H., Lin, C. Y., Lee, S. H. & Wang, W. H. Membrane lipid profiles of coral responded to zinc oxide nanoparticle-induced perturbations on the cellular membrane. Aquatic Toxicol. 187, 72–81. https://doi.org/10.1016/j.aquatox.2017.03.021 (2017).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Tang, C. H., Shi, S. H., Lin, C. Y., Li, H. H. & Wang, W. H. Using lipidomic methodology to characterize coral response to herbicide contamination and develop an early biomonitoring model. Sci. Total Environ. 648, 1275–1283. https://doi.org/10.1016/j.scitotenv.2018.08.296 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 35.

    Imbs, A. B., Dang, L. P. T., Rybin, V. G., Nguyen, N. T. & Pham, L. Q. Distribution of very-long-chain fatty acids between molecular species of different phospholipid classes of two soft corals. Biochem. Anal. Biochem. 4, 205. https://doi.org/10.4172/2161-1009.1000205 (2015).

    CAS 
    Article 

    Google Scholar 

  • 36.

    Imbs, A. B. & Dang, L. T. P. The molecular species of phospholipids of the cold-water soft coral Gersemia rubiformis (Ehrenberg, 1834) (Alcyonacea, Nephtheidae). Russ. J. Mar. Biol. 43, 239–244. https://doi.org/10.1134/s1063074017030051 (2017).

    CAS 
    Article 

    Google Scholar 

  • 37.

    Sikorskaya, T. V. & Imbs, A. B. Study of total lipidome of the Sinularia siaesensis soft coral. Russ. J. Bioorg. Chem. 44, 712–723. https://doi.org/10.1134/S1068162019010151 (2018).

    CAS 
    Article 

    Google Scholar 

  • 38.

    Sikorskaya, T. V. Investigation of the total lipidoma from a zoantharia Palythoa sp. Chem. Nat. Comp. 56, 44–49. https://doi.org/10.1007/s10600-020-02940-4 (2020).

    CAS 
    Article 

    Google Scholar 

  • 39.

    Garrett, T. A., Hwang, J., Schmeitzel, J. L. & Schwarz, J. Lipidomics of Aiptasia pallida and Symbiodinium: A model system for investigating the molecular basis of coral symbiosis. Faseb J. 25, 9382. https://doi.org/10.1096/fasebj.25.1_supplement.938.2 (2011).

    Article 

    Google Scholar 

  • 40.

    Schmeitzel, J. L., Klein, J., Smith, M., Schwarz, J. & Garrett, T. A. Comparative lipidomic analysis of the symbiosis between Aiptasia pallida and Symbiodinium. FASEB J. 26, 7891. https://doi.org/10.1096/fasebj.26.1_supplement.789.1 (2012).

    Article 

    Google Scholar 

  • 41.

    Garrett, T. A., Schmeitzel, J. L., Klein, J. A., Hwang, J. J. & Schwarz, J. A. Comparative lipid profiling of the cnidarian Aiptasia pallida and its dinoflagellate symbiont. PLoS ONE 8, e57975. https://doi.org/10.1371/journal.pone.0057975 (2013).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 42.

    Bosh, T. V. & Long, P. Q. A Comparison of the composition of wax ester molecular species of different coral groups (Subclasses Hexacorallia and Octocorallia). Russ. J. Mar. Biol. 43, 471–478. https://doi.org/10.1134/s1063074017060049 (2017).

    CAS 
    Article 

    Google Scholar 

  • 43.

    Sogin, E. Development and application of metabolomics for reef-building corals Ph.D. – Zoology thesis, University of Hawaii at Manoa (2015).

  • 44.

    Sikorskaya, T. V., Ermolenko, E. V. & Imbs, A. B. Effect of experimental thermal stress on lipidomes of the soft coral Sinularia sp. and its symbiotic dinoflagellates. J. Exp. Mar. Biol. Ecol. 524, 151295. https://doi.org/10.1016/j.jembe.2019.151295 (2020).

    Article 

    Google Scholar 

  • 45.

    Sikorskaya, T. V. & Imbs, A. B. Coral lipidomes and their changes during coral bleaching. Russ. J. Bioorg. Chem. 46, 643–656. https://doi.org/10.1134/s1068162020050234 (2020).

    CAS 
    Article 

    Google Scholar 

  • 46.

    Rosset, S. et al. Lipidome analysis of Symbiodiniaceae reveals possible mechanisms of heat stress tolerance in reef coral symbionts. Coral Reefs 38, 1241–1253. https://doi.org/10.1007/s00338-019-01865-x (2019).

    ADS 
    Article 

    Google Scholar 

  • 47.

    Imbs, A. B. & Chernyshev, A. V. Tracing of lipid markers of soft corals in a polar lipidome of the nudibranch mollusk Tritonia tetraquetra from the Sea of Okhotsk. Polar Biol. 42, 245–256. https://doi.org/10.1007/s00300-018-2418-y (2019).

    Article 

    Google Scholar 

  • 48.

    Imbs, A. B., Latyshev, N. A., Dautova, T. N. & Latypov, Y. Y. Distribution of lipids and fatty acids in corals by their taxonomic position and presence of zooxanthellae. Mar. Ecol. Prog. Ser. 409, 65–75. https://doi.org/10.3354/meps08622 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 49.

    McIntyre, T. M., Snyder, F. & Marathe, G. K. Ether-linked lipids and their bioactive species. In Biochemistry of Lipids, Lipoproteins and Membranes (eds Vance, D. E. & Vance, J. E.) 245–276 (Elsevier, 2008).

    Chapter 

    Google Scholar 

  • 50.

    Vance, J. E. Phospholipid synthesis and transport in mammalian cells. Traffic 16, 1–18. https://doi.org/10.1111/tra.12230 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 51.

    Sundahl, H., Buhl-Mortensen, P. & Buhl-Mortensen, L. Distribution and suitable habitat of the cold-water corals Lophelia pertusa, Paragorgia arborea, and Primnoa resedaeformis on the Norwegian continental shelf. Front. Mar. Sci. 7, 22. https://doi.org/10.3389/fmars.2020.00213 (2020).

    Article 

    Google Scholar 

  • 52.

    Vysotskii, M. V. & Svetashev, V. I. Identification, isolation and characterization of tetracosapolyenoic acids in lipids of marine coelenterates. Biochim. Biophys. Acta 1083, 161–165. https://doi.org/10.1016/0005-2760(91)90037-I (1991).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 53.

    Imbs, A. B., Demidkova, D. A. & Dautova, T. N. Lipids and fatty acids of cold-water soft corals and hydrocorals: A comparison with tropical species and implications for coral nutrition. Mar. Biol. 163, 202. https://doi.org/10.1007/s00227-016-2974-z (2016).

    CAS 
    Article 

    Google Scholar 

  • 54.

    Magnusson, C. D. & Haraldsson, G. G. Ether lipids. Chem. Phys. Lipids 164, 315–340 (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 55.

    Mann, J. & Skeaff, M. Triacylglycerols in Encyclopedia of Life Sciences, 1–9 (Nature Publishing Group, 2001).

  • 56.

    Imbs, A. B., Yakovleva, I. M., Latyshev, N. A. & Pham, L. Q. Biosynthesis of polyunsaturated fatty acids in zooxanthellae and polyps of corals. Russ. J. Mar. Biol. 36, 452–457. https://doi.org/10.1134/S1063074010060076 (2010).

    CAS 
    Article 

    Google Scholar 

  • 57.

    Treignier, C., Tolosa, I., Grover, R., Reynaud, S. & Ferrier-Pages, C. Carbon isotope composition of fatty acids and sterols in the scleractinian coral Turbinaria reniformis: Effect of light and feeding. Limnol. Oceanog. 54, 1933–1940 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 58.

    Kabeya, N. et al. Genes for de novo biosynthesis of omega-3 polyunsaturated fatty acids are widespread in animals. Science Advances 4, eaar6849, https://doi.org/10.1126/sciadv.aar6849 (2018).

  • 59.

    Rybin, V. G., Imbs, A. B., Demidkova, D. A. & Ermolenko, E. V. Identification of molecular species of monoalkyldiacylglycerol from the squid Berryteuthis magister using liquid chromatography–APCI high-resolution mass spectrometry. Chem. Phys. Lipids 202, 55–61 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 60.

    Imbs, A. B., Dang, L. P. T., Rybin, V. G. & Svetashev, V. I. Fatty acid, lipid class, and phospholipid molecular species composition of the soft coral Xenia sp. (Nha Trang Bay, the South China Sea, Vietnam). Lipids 50, 575–589. https://doi.org/10.1007/s11745-015-4021-0 (2015).

    CAS 
    Article 

    Google Scholar 

  • 61.

    Folch, J., Lees, M. & Sloane Stanley, G. H. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226, 497–509 (1957).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 62.

    Svetashev, V. I. Mild method for preparation of 4,4-dimethyloxazoline derivatives of polyunsaturated fatty acids for GC–MS. Lipids 46, 463–467. https://doi.org/10.1007/s11745-011-3550-4 (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 63.

    Brügger, B. Lipidomics: Analysis of the lipid composition of cells and subcellular organelles by electrospray ionization mass spectrometry in Annual Review of Biochemistry (ed. Kornberg, R. D.). Vol. 83, 79–98 (Annual Reviews, 2014).

  • 64.

    Wagner, S. & Richling, E. LC-ESI-MS determination of phospholipids and lysophospholipids. Chromatographia 72, 659–664. https://doi.org/10.1365/s10337-010-1698-3 (2010).

    CAS 
    Article 

    Google Scholar 

  • 65.

    Wang, R. et al. Identification of ceramide 2-aminoethylphosphonate molecular species from different aquatic products by NPLC/Q-Exactive-MS. Food Chem. 304, 10. https://doi.org/10.1016/j.foodchem.2019.125425 (2020).

    CAS 
    Article 

    Google Scholar 

  • 66.

    Hsu, F. F. & Turk, J. Electrospray ionization with low-energy collisionally activated dissociation tandem mass spectrometry of glycerophospholipids: Mechanisms of fragmentation and structural characterization. J. Chromatog. B 877, 2673–2695. https://doi.org/10.1016/j.jchromb.2009.02.033 (2009).

    CAS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Global potential for harvesting drinking water from air using solar energy

    Post-fire insect fauna explored by crown fermental traps in forests of the European Russia