in

Local adaptation to continuous mowing makes the noxious weed Solanum elaeagnifolium a superweed candidate by improving fitness and defense traits

[adace-ad id="91168"]
  • 1.

    Holzner, W. Concepts, categories and characteristics of weeds. Biol. Ecol. Weeds https://doi.org/10.1007/978-94-017-0916-3_1 (1982).

    Article 

    Google Scholar 

  • 2.

    Randall, J. M. Weed control for the preservation of biological diversity. Weed Technol. 10, 370–383 (1996).

    Article 

    Google Scholar 

  • 3.

    Atkinson, I. A. E. Problem Weeds on New Zealand Islands. (Dept. of Conservation, 1997).

  • 4.

    Goslee, S. C., Peters, D. P. C. & Beck, K. G. Modeling invasive weeds in grasslands: the role of allelopathy in Acroptilon repens invasion. Ecological Modelling (2001). https://www.sciencedirect.com/science/article/pii/S0304380001002319. Accessed 2 Oct 2020.

  • 5.

    Dawson, W., Burslem, D. F. R. P. & Hulme, P. E. Factors explaining alien plant invasion success in a tropical ecosystem differ at each stage of invasion. J. Ecol. 97, 657–665 (2009).

    Article 

    Google Scholar 

  • 6.

    Baker, H. G. The evolution of weeds, annual review of ecology, evolution, and systematics. DeepDyve (1974). https://www.deepdyve.com/lp/annual-reviews/the-evolution-of-weeds-YxSFG7LI8J. Accessed 2 Oct 2020.

  • 7.

    Perrins, J., Williamson, M. & Fitter, A. A survey of differing views of weed classification: Implications for regulation of introductions. Biol. Conserv. 60, 47–56 (1992).

    Article 

    Google Scholar 

  • 8.

    Mack, R. N. Predicting the identity and fate of plant invaders: Emergent and emerging approaches. Biol. Conserv. 78, 107–121 (1996).

    Article 

    Google Scholar 

  • 9.

    Sutherland, S. What Makes a Weed a Weed: Life History Traits of Native (2004). https://www.jstor.org/stable/pdf/40005745.pdf. Accessed 2 Oct 2020.

  • 10.

    Leather, G. R. Weed control using allelopathic crop plants. J. Chem. Ecol. 9, 983–989 (1983).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 11.

    Mersie, W. & Singh, M. Allelopathic effect of parthenium (Parthenium hysterophorus L.) extract and residue on some agronomic crops and weeds. J. Chem. Ecol. 13, 1739–1747 (1987).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 12.

    Derya, E., yildiz, O. & Nelson, E. T. (PDF) Ecology, Competitive Advantages, and Integrated (2006). https://www.researchgate.net/publication/287491753_Ecology_Competitive_Advantages_and_Integrated_Control_of_Rhododendron_An_Old_Ornamental_yet_Emerging_Invasive_Weed_Around_the_Globe. Accessed 2 Oct 2020.

  • 13.

    Clements, D. R. & Ditommaso, A. Climate change and weed adaptation: Can evolution of invasive plants lead to greater range expansion than forecasted?. Weed Res. 51, 227–240 (2011).

    Article 

    Google Scholar 

  • 14.

    Sebasky, M. E., Keller, S. R. & Taylor, D. R. Investigating past range dynamics for a weed of cultivation, Silene vulgaris. Ecol. Evol. 6, 4800–4811 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 15.

    Hodgins, K. Unearthing the impact of human disturbance on a notorious weed. Mol. Ecol. 23, 2141–2143 (2014).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 16.

    Hobbs, R. J. & Huenneke, L. F. Disturbance, diversity, and invasion: Implications for conservation. Ecosyst. Manag. https://doi.org/10.1007/978-1-4612-4018-1_16 (1992).

    Article 

    Google Scholar 

  • 17.

    Lozon, J. D. & Macisaac, H. J. Biological invasions: Are they dependent on disturbance?. Environ. Rev. 5, 131–144 (1997).

    Article 

    Google Scholar 

  • 18.

    Ditomaso, J. M. Invasive weeds in rangelands: Species, impacts, and management. Weed Sci. 48, 255–265 (2000).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Larson, D. L., Anderson, P. J. & Newton, W. Alien plant invasion in mixed-grass prairie: Effects of vegetation type and anthropogenic disturbance. Ecol. Appl. 11, 128–141 (2001).

    Article 

    Google Scholar 

  • 20.

    Chiuffo, M. C., Cock, M. C., Prina, A. O. & Hierro, J. L. Response of native and non-native ruderals to natural and human disturbance. Biol. Invasions 20, 2915–2925 (2018).

    Article 

    Google Scholar 

  • 21.

    Kariyat, R. R., Scanlon, S. R., Mescher, M. C., De Moraes, C. M. & Stephenson, A. G. Inbreeding depression in Solanum carolinense (Solanaceae) under field conditions and implications for mating system evolution. PLoS ONE (2011). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3236180/. Accessed 2 Oct 2020.

  • 22.

    Li, B., Shibuya, T., Yogo, Y. & Hara, T. Effects of ramet clipping and nutrient availability on growth and biomass allocation of yellow nutsedge. Ecol. Res. 19, 603–612 (2004).

    Article 

    Google Scholar 

  • 23.

    Jia, X., Pan, X. Y., Li, B., Chen, J. K. & Yang, X. Z. Allometric growth, disturbance regime, and dilemmas of controlling invasive plants: A model analysis. Biol. Invasions 11, 743–752 (2008).

    Article 

    Google Scholar 

  • 24.

    Ramula, S. Annual mowing has the potential to reduce the invasion of herbaceous Lupinus polyphyllus. Biol. Invasions 22, 3163–3173 (2020).

    Article 

    Google Scholar 

  • 25.

    Liu, X. & Huang, B. Mowing effects on root production, growth, and mortality of creeping bentgrass. Crop Sci. 42, 1241–1250 (2002).

    Article 

    Google Scholar 

  • 26.

    Biazzo, J. & Milbrath, L. R. Response of pale swallowwort (Vincetoxicum rossicum) to multiple years of mowing. Invasive Plant Sci. Manag. 12, 169–175 (2019).

    Article 

    Google Scholar 

  • 27.

    Yong, X.-H. et al. Maternal Mowing Effect on Seed Traits of an Invasive Weed, Erigeron annus in farmland. Sains Malay. 44, 347–354 (2015).

    Article 

    Google Scholar 

  • 28.

    Mithöfer, A., Wanner, G. & Boland, W. Effects of feeding spodoptera littoralis on lima bean leaves. II. Continuous mechanical wounding resembling insect feeding is sufficient to elicit herbivory-related volatile emission. Plant Physiol. 137, 1160–1168 (2005).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 29.

    Engelberth, J. & Engelberth, M. The Costs of Green Leaf Volatile-Induced Defense Priming: Temporal Diversity in Growth Responses to Mechanical Wounding and Insect Herbivory. Plants 8, 23 (2019).

    CAS 
    PubMed Central 
    Article 

    Google Scholar 

  • 30.

    Erfmeier, A. & Bruelheide, H. Invasive and nativeRhododendron ponticumpopulations: Is there evidence for genotypic differences in germination and growth?. Ecography 28, 417–428 (2005).

    Article 

    Google Scholar 

  • 31.

    Milbau, A., Nijs, I., Van Peer, L., Reheul, D. & De Cauwer, B. Disentangling invasiveness and invasibility during invasion in synthesized grassland communities. New Phytol. 159, 657–667 (2003).

    Article 

    Google Scholar 

  • 32.

    Etten, M. L. V., Conner, J. K., Chang, S.-M. & Baucom, R. S. Not all weeds are created equal: A database approach uncovers differences in the sexual system of native and introduced weeds. Ecol. Evol. 7, 2636–2642 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 33.

    Baker, H. G. Self-compatibility and establishment after “long-distance” dispersal. Evolution 9, 347 (1955).

    Google Scholar 

  • 34.

    Tabassum, S. & Leishman, M. R. It doesn’t take two to tango: Increased capacity for self-fertilization towards range edges of two coastal invasive plant species in eastern Australia. Biol. Invasions 21, 2489–2501 (2019).

    Article 

    Google Scholar 

  • 35.

    Pannell, J. R. & Barrett, S. C. H. Baker’s law revisited: reproductive assurance in a metapopulation. Evolution 52, 657–668 (1998).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 36.

    Pannell, J. R. Evolution of the mating system in colonizing plants. Mol. Ecol. 24, 2018–2037 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 37.

    Mena-Ali, J. I., Keser, L. H. & Stephenson, A. G. Inbreeding depression in Solanum carolinense (Solanaceae), a species with a plastic self-incompatibility response. BMC Evol. Biol. 8, 10 (2008).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 38.

    Chauhan, B. S., Migo, T., Westerman, P. R. & Johnson, D. E. Post-dispersal predation of weed seeds in rice fields. Weed Res. 50, 553–560 (2010).

    Article 

    Google Scholar 

  • 39.

    Muniappan, R. & Viraktamath, C. A. Invasive alien weeds in the Western Ghats. Curr. Sci. 64, 555–558 (1993).

    Google Scholar 

  • 40.

    Ziller S. R. A Estepe Gramineo-Lenhosa no Segundo Plan-alto do Paraná: Diagnóstico Ambiental com Enfoque à Contami-nacão Biológica (PhD Thesis). Universidade Federal doParaná (2000).

  • 41.

    Javaid, A. & Riaz, T. Parthenium hysterophorus L., an alien invasive weed threatening natural vegetations in Punjab, Pakistan. Pak. J. Bot. 44, 123–126 (2012).

    Google Scholar 

  • 42.

    Alves, M. T. & Hilker, F. M. Hunting cooperation and Allee effects in predators. J. Theor. Biol. 419, 13–22 (2017).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • 43.

    Kariyat, R. R., Mauck, K. E., Moraes, C. M. D., Stephenson, A. G. & Mescher, M. C. Inbreeding alters volatile signalling phenotypes and influences tri-trophic interactions in horsenettle (Solanum carolinense L..). Ecol. Lett. 15, 301–309 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 44.

    Nihranz, C. T. et al. Herbivory and inbreeding affect growth, reproduction, and resistance in the rhizomatous offshoots of Solanum carolinense (Solanaceae). Evol. Ecol. 33, 499–520 (2019).

    Article 

    Google Scholar 

  • 45.

    Nihranz, C. T. et al. Transgenerational impacts of herbivory and inbreeding on reproductive output in Solanum carolinense. Am. J. Bot. 107, 286–297 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 46.

    Wilkens, R. T., Shea, G. O., Halbreich, S. & Stamp, N. E. Resource availability and the trichome defenses of tomato plants. Oecologia 106, 181–191 (1996).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 47.

    Zaynab, M. et al. Role of secondary metabolites in plant defense against pathogens. Microb. Pathog. 124, 198–202 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 48.

    Neilson, E. H., Goodger, J. Q., Woodrow, I. E. & Møller, B. L. Plant chemical defense: at what cost?. Trends Plant Sci. 18, 250–258 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 49.

    Boyd, J. W., Murray, D. S. & Tyrl, R. J. Silverleaf nightshade, Solarium elaeagnifolium, origin, distribution, and relation to man. Econ. Bot. 38, 210–217 (1984).

    Article 

    Google Scholar 

  • 50.

    EPPO Global Database. Solanum elaeagnifolium (SOLEL)[Documents]| EPPO Global Database. https://gd.eppo.int/taxon/SOLEL/documents. Accessed 5th Nov 2020.

  • 51.

    Travlos, I. S. Responses of invasive silverleaf nightshade (Solanum elaeagnifolium) populations to varying soil water availability. Phytoparasitica 41, 41–48 (2012).

    Article 

    Google Scholar 

  • 52.

    Mekki, M. Biology, distribution and impacts of silverleaf nightshade (Solanum elaeagnifolium Cav.). EPPO Bull. 37, 114–118 (2007).

    Article 

    Google Scholar 

  • 53.

    Cuthbertson, E.G. Morphology of the underground parts of silverleaf nightshade. 5th Australian Weeds Conference (1976).

  • 54.

    Heap, J., Honan, I. & Smith, E. Silverleaf nigthshade: A Technical Handbook for Animal and Plant Control Boards in South Australia (Adelaide, 1997).

    Google Scholar 

  • 55.

    Petanidou, T. et al. Self-compatibility and plant invasiveness: Comparing species in native and invasive ranges. Perspect. Plant Ecol. Evol. Syst. 14, 3–12 (2012).

    Article 

    Google Scholar 

  • 56.

    Kariyat, R. R. & Chavana, J. Field data on plant growth and insect damage on the noxious weed Solanum eleaegnifolium in an unexplored native range. Data Brief 19, 2348–2351 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 57.

    Centibas, M. & Koyuncu, F. The ripening and fruit quality of ‘Monroe’ peaches in response to pre-harvest application gibberellic acid. Akdeniz Üniv. Ziraat Fakült. Dergisi 26, 73–80 (2013).

    Google Scholar 

  • 58.

    Pornaro, C., Macolino, S., Menegon, A. & Richardson, M. WinRHIZO technology for measuring morphological traits of Bermudagrass Stolons. Agron. J. 109, 3007–3010 (2017).

    CAS 
    Article 

    Google Scholar 

  • 59.

    Kariyat, R. R. et al. Inbreeding, herbivory, and the transcriptome of Solanum carolinense. Entomol. Exp. Appl. 144, 134–144 (2012).

    Article 

    Google Scholar 

  • 60.

    Kariyat, R. R. et al. Feeding on glandular and non-glandular leaf trichomes negatively affect growth and development in tobacco hornworm (Manduca sexta) caterpillars. Arthropod Plant Interact. 13, 321–333 (2019).

    Article 

    Google Scholar 

  • 61.

    Tayal, M., Chavana, J. & Kariyat, R. R. Efficiency of using electric toothbrush as an alternative to a tuning fork for artificial buzz pollination is independent of instrument buzzing frequency. BMC Ecol. 20, 1 (2020).

    Article 

    Google Scholar 

  • 62.

    Singh, S. & Kariyat, R. R. Exposure to polyphenol-rich purple corn pericarp extract restricts fall armyworm (Spodoptera frugiperda) growth. Plant Signal. Behav. 15, 1784545 (2020).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 63.

    Kariyat, R. R. et al. Constitutive and herbivore-induced structural defenses are compromised by inbreeding in Solanum carolinense (Solanaceae). Am. J. Bot. 100, 1014–1021 (2013).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 64.

    Paez-Garcia, A. et al. Root traits and phenotyping strategies for plant improvement. Plants 4, 334–355 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 65.

    Pinke, G., Pál, R. & Botta-Dukát, Z. Effects of environmental factors on weed species composition of cereal and stubble fields in western Hungary. Open Life Sci. 5, 283–292 (2010).

    Article 

    Google Scholar 

  • 66.

    Tremayne, M. A. & Richards, A. J. Seed weight and seed number affect subsequent fitness in outcrossing and selfing Primula species. New Phytol. 148, 127–142 (2000).

    Article 

    Google Scholar 

  • 67.

    Ramesh, K., Matloob, A., Aslam, F., Florentine, S. K. & Chauhan, B. S. Weeds in a changing climate: Vulnerabilities, consequences, and implications for future weed management. Front. Plant Sci. 8, 1 (2017).

    CAS 
    Article 

    Google Scholar 

  • 68.

    Rha, E. S. & Jamil, M. Gibberellic acid (GA3) enhance seed water uptake, germination and early seedling growth in sugar beet under salt stress. Pak. J. Biol. Sci. 10, 654–658 (2007).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 69.

    Stoller, E. W. & Wax, L. M. Periodicity of germination and emergence of some annual weeds. Weed Sci. 21, 574–580 (1973).

    Article 

    Google Scholar 

  • 70.

    Meyer, S. E. & Pendleton, B. K. Factors affecting seed germination and seedling establishment of a long-lived desert shrub (Coleogyne ramosissima: Rosaceae). Plant Ecol. 178, 171–187 (2005).

    Article 

    Google Scholar 

  • 71.

    Milbau, A., Scheerlinck, L., Reheul, D., De Cauwer, B. & Nijs, I. Ecophysiological and morphological parameters related to survival in grass species exposed to an extreme climatic event. Physiol. Plant. 125, 500–512 (2005).

    CAS 
    Article 

    Google Scholar 

  • 72.

    Gioria, M. & Pyšek, P. Early bird catches the worm: Germination as a critical step in plant invasion. Biol. Invasions 19, 1055–1080 (2016).

    Article 

    Google Scholar 

  • 73.

    Mahmood, A. H. et al. Influence of various environmental factors on seed germination and seedling emergence of a noxious environmental weed: Green galenia (Galenia pubescens). Weed Sci. 64, 486–494 (2016).

    Article 

    Google Scholar 

  • 74.

    Mcnaughton, S. J. Grazing lawns: On domesticated and wild grazers. Am. Nat. 128, 937–939 (1986).

    Article 

    Google Scholar 

  • 75.

    McNaughton, S. J. Adaptation of herbivores to seasonal changes in nutrient supply. Nutr. Herb. 1, 391–408 (1987).

    Google Scholar 

  • 76.

    Laliberté, E., Lambers, H., Burgess, T. I. & Wright, S. J. Phosphorus limitation, soil-borne pathogens and the coexistence of plant species in hyperdiverse forests and shrublands. New Phytol. 206, 507–521 (2014).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 77.

    Kramer-Walter, K. R. et al. Root traits are multidimensional: Specific root length is independent from root tissue density and the plant economic spectrum. J. Ecol. 104, 1299–1310 (2016).

    Article 

    Google Scholar 

  • 78.

    Losapio, G. et al. An invasive plant species enhances biodiversity in overgrazed pastures but inhibits its recovery in protected areas. J. Ecol. https://doi.org/10.1101/2020.08.16.227066 (2020).

    Article 

    Google Scholar 

  • 79.

    Onen, H., Farooq, S., Gunal, H., Ozaslan, C. & Erdem, H. Higher tolerance to abiotic stresses and soil types may accelerate common ragweed (Ambrosia artemisiifolia) invasion. Weed Sci. 65, 115–127 (2016).

    Article 

    Google Scholar 

  • 80.

    Wittstock, U. & Gershenzon, J. Constitutive plant toxins and their role in defense against herbivores and pathogens. Curr. Opin. Plant Biol. 5, 300–307 (2002).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 81.

    Mooney, E. H., Tiedeken, E. J., Muth, N. Z. & Niesenbaum, R. A. Differential induced response to generalist and specialist herbivores by Lindera benzoin (Lauraceae) in sun and shade. Oikos 118, 1181–1189 (2009).

    Article 

    Google Scholar 

  • 82.

    Baldwin, I. T. Plant volatiles. Curr. Biol. 20, 392–397 (2011).

    Article 
    CAS 

    Google Scholar 

  • 83.

    Coley, P. D., Bryant, J. P. & Chapin, F. S. Resource availability and plant antiherbivore defense. Science 230, 895–899 (1985).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 84.

    Fine, P. V. A. Herbivores promote habitat specialization by trees in amazonian forests. Science 305, 663–665 (2004).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 85.

    Zandt, P. A. V. Plant defense, growth, and habitat: A comparative assessment of constitutive and induced resistance. Ecology 88, 1984–1993 (2007).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 86.

    Salminen, S. O. & Grewal, P. S. Does decreased mowing frequency enhance alkaloid production in endophytic tall fescue and perennial ryegrass?. J. Chem. Ecol. 28, 939–950 (2002).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 87.

    Freeman. An Overview of Plant Defenses against Pathogens and Herbivores. The Plant Health Instructor (2008). https://doi.org/10.1094/phi-i-2008-0226-01.

  • 88.

    Davis, H. N. et al. Review of Major Crop and Animal Arthropod Pests of South Texas. Subtropical Agriculture and Environments (2020).

  • 89.

    Traw, M. B., Kim, J., Enright, S., Cipollini, D. F. & Bergelson, J. Negative cross-talk between salicylate- and jasmonate-mediated pathways in the Wassilewskija ecotype of Arabidopsis thaliana. Mol. Ecol. 12, 1125–1135 (2003).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 90.

    Bostock, R. M. Signal crosstalk and induced resistance: Straddling the line between cost and benefit. Annu. Rev. Phytopathol. 43, 545–580 (2005).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 91.

    Lefoe, G. et al. Assessing the fundamental host-range of Leptinotarsa texana Schaeffer as an essential precursor to biological control risk analysis. Biol. Control 143, 104165 (2020).

    CAS 
    Article 

    Google Scholar 

  • 92.

    Chung, S. H. & Felton, G. W. Specificity of induced resistance in tomato against specialist lepidopteran and coleopteran species. J. Chem. Ecol. 37, 378–386 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 93.

    Korpita, T., Gómez, S. & Orians, C. M. Cues from a specialist herbivore increase tolerance to defoliation in tomato. Funct. Ecol. 28, 395–401 (2013).

    Article 

    Google Scholar 

  • 94.

    Yang, Q. et al. Plant–soil biota interactions of an invasive species in its native and introduced ranges: Implications for invasion success. Soil Biol. Biochem. 65, 78–85 (2013).

    CAS 
    Article 

    Google Scholar 

  • 95.

    Blair, A. C. & Wolfe, L. M. The evolution of an invasive plant: An experimental study with Silene latifolia. Ecology 85, 3035–3042 (2004).

    Article 

    Google Scholar 

  • 96.

    Kariyat, R. R., Smith, J. D., Stephenson, A. G., Moraes, C. M. D. & Mescher, M. C. Non-glandular trichomes of Solanum carolinense deter feeding by Manduca sexta caterpillars and cause damage to the gut peritrophic matrix. Proc. R. Soc. B 284, 20162323 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 97.

    Kariyat, R. R. et al. Leaf trichomes affect caterpillar feeding in an instar-specific manner. Commun. Integr. Biol. 11, 1–6 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 98.

    Karabourniotis, G., Liakopoulos, G., Nikolopoulos, D. & Bresta, P. Protective and defensive roles of non-glandular trichomes against multiple stresses: Structure–function coordination. J. For. Res. 31, 1–12 (2019).

    Article 
    CAS 

    Google Scholar 

  • 99.

    Kang, J.-H., Shi, F., Jones, A. D., Marks, M. D. & Howe, G. A. Distortion of trichome morphology by the hairless mutation of tomato affects leaf surface chemistry. J. Exp. Bot. 61, 1053–1064 (2009).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 100.

    Tian, D., Tooker, J., Peiffer, M., Chung, S. H. & Felton, G. W. Role of trichomes in defense against herbivores: Comparison of herbivore response to woolly and hairless trichome mutants in tomato (Solanum lycopersicum). Planta 236, 1053–1066 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 101.

    An, F. et al. Ethylene-induced stabilization of ETHYLENE INSENSITIVE3 and EIN3-LIKE1 is mediated by proteasomal degradation of EIN3 binding F-Box 1 and 2 That requires EIN2 in arabidopsis. Plant Cell 22, 2384–2401 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 102.

    Lämke, J. & Bäurle, I. Epigenetic and chromatin-based mechanisms in environmental stress adaptation and stress memory in plants. Genome Biol. 18, 1 (2017).

    Article 
    CAS 

    Google Scholar 

  • 103.

    Weinhold, A. Transgenerational stress-adaption: an opportunity for ecological epigenetics. Plant Cell Rep. 37, 3–9 (2017).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 104.

    Miryeganeh, M. & Saze, H. Epigenetic inheritance and plant evolution. Popul. Ecol. 62, 17–27 (2019).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Candidatus Eremiobacterota, a metabolically and phylogenetically diverse terrestrial phylum with acid-tolerant adaptations

    Study reveals plunge in lithium-ion battery costs