in

Long-read metagenomics of soil communities reveals phylum-specific secondary metabolite dynamics

  • 1.

    Milshteyn, A., Schneider, J. S. & Brady, S. F. Mining the metabiome: identifying novel natural products from microbial communities. Chem. Biol. 21, 1211–1223 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 2.

    Rutledge, P. J. & Challis, G. L. Discovery of microbial natural products by activation of silent biosynthetic gene clusters. Nat. Rev. Microbiol. 13, 509–523 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 3.

    Dittmann, E., Gugger, M., Sivonen, K. & Fewer, D. P. Natural product biosynthetic diversity and comparative genomics of the cyanobacteria. Trends Microbiol. 23, 642–652 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 4.

    Cragg, G. M., Kingston, D. G. & Newman, D. J. Anticancer Agents from Natural Products. (CRC press, 2011).

  • 5.

    Cragg, G. M. & Newman, D. J. Natural products: a continuing source of novel drug leads. Biochimica et. Biophysica Acta 1830, 3670–3695 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 6.

    Singh, R., Kumar, M., Mittal, A. & Mehta, P. K. Microbial metabolites in nutrition, healthcare and agriculture. 3 Biotech 7, 15 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 7.

    Bohlmann, J. & Keeling, C. I. Terpenoid biomaterials. Plant J. 54, 656–669 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 8.

    Kang, A. & Lee, T. S. Biotechnology for Biofuel Production and Optimization 35–71 (Elsevier, 2016).

  • 9.

    Nowruzi, B., Sarvari, G. & Blanco, S. The cosmetic application of cyanobacterial secondary metabolites. Algal Res. 49, 101959 (2020).

    Google Scholar 

  • 10.

    Crits-Christoph, A., Diamond, S., Butterfield, C. N., Thomas, B. C. & Banfield, J. F. Novel soil bacteria possess diverse genes for secondary metabolite biosynthesis. Nature 558, 440–444 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 11.

    Sharrar, A. M. et al. Bacterial secondary metabolite biosynthetic potential in soil varies with phylum, depth, and vegetation type. Mbio. 11, 1–17 (2020).

    Google Scholar 

  • 12.

    Libis, V. et al. Uncovering the biosynthetic potential of rare metagenomic DNA using co-occurrence network analysis of targeted sequences. Nat. Commun. 10, 1–9 (2019).

    CAS 

    Google Scholar 

  • 13.

    Haro-Moreno, J. M., López-Pérez, M. & Rodriguez-Valera, F. Enhanced recovery of microbial genes and genomes from a marine water column using long-read metagenomics. Front Microbiol. 2410, 1–15 (2021).

    Google Scholar 

  • 14.

    Navarro-Muñoz, J. C. et al. A computational framework to explore large-scale biosynthetic diversity. Nat Chem Biol. 16, 60–68 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 15.

    Sugimoto, Y. et al. A metagenomic strategy for harnessing the chemical repertoire of the human microbiome. Science 366, 1–11 (2019).

    Google Scholar 

  • 16.

    Katz, M., Hover, B. M. & Brady, S. F. Culture-independent discovery of natural products from soil metagenomes. J. Ind. Microbiol. Biotechnol. 43, 129–141 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 17.

    Lynch, M. D. & Neufeld, J. D. Ecology and exploration of the rare biosphere. Nat. Rev. Microbiol. 13, 217–229 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 18.

    Amos, G. C. et al. Comparative transcriptomics as a guide to natural product discovery and biosynthetic gene cluster functionality. Proc. Natl Acad. Sci. USA 114, E11121–E11130 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    Rodriguez-Caballero, E. et al. Dryland photoautotrophic soil surface communities endangered by global change. Nat. Geosci. 11, 185–189 (2018).

    CAS 

    Google Scholar 

  • 20.

    Reddy, B. V. B. et al. Natural product biosynthetic gene diversity in geographically distinct soil microbiomes. Appl. Environ. Microbiol. 78, 3744–3752 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    Starkenburg, S. R. et al. Genome of the cyanobacterium Microcoleus vaginatus FGP-2, a photosynthetic ecosystem engineer of arid land soil biocrusts worldwide. J. Bacteriol. 193, 4569–4570 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 22.

    Belnap, J., Weber, B. & Büdel, B. Biological Soil Crusts: an Organizing Principle in Drylands 3–13 (Springer, 2016).

  • 23.

    Swenson, T. L., Karaoz, U., Swenson, J. M., Bowen, B. P. & Northen, T. R. Linking soil biology and chemistry in biological soil crust using isolate exometabolomics. Nat. Commun. 9, 1–10 (2018).

    CAS 

    Google Scholar 

  • 24.

    Adamek, M., Spohn, M., Stegmann, E. & Ziemert, N. Antibiotics 23–47 (Springer, 2017).

  • 25.

    Couradeau, E. et al. Bacteria increase arid-land soil surface temperature through the production of sunscreens. Nat. Commun. 7, 1–7 (2016).

    Google Scholar 

  • 26.

    Martins, T. P. et al. Chemistry, bioactivity and biosynthesis of cyanobacterial alkylresorcinols. Nat. Prod. Rep. 36, 1437–1461 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Luesch, H., Moore, R. E., Paul, V. J., Mooberry, S. L. & Corbett, T. H. Isolation of dolastatin 10 from the marine cyanobacterium Symploca species VP642 and total stereochemistry and biological evaluation of its analogue symplostatin 1. J. Nat. Products 64, 907–910 (2001).

    CAS 

    Google Scholar 

  • 28.

    Chrapusta, E. et al. Microcystins and anatoxin-a in Arctic biocrust cyanobacterial communities. Toxicon 101, 35–40 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 29.

    Van Goethem, M. W., Swenson, T. L., Trubl, G., Roux, S. & Northen, T. R. Characteristics of wetting-induced bacteriophage blooms in biological soil crust. Mbio. 10, 1–15 (2019).

    Google Scholar 

  • 30.

    Makhalanyane, T. P. et al. Microbial ecology of hot desert edaphic systems. FEMS Microbiol. Rev. 39, 203–221 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 31.

    Bowker, M. A., Reed, S. C., Maestre, F. T. & Eldridge, D. J. Biocrusts: the living skin of the earth. (Springer, 2018).

  • 32.

    Büdel, B., Dulić, T., Darienko, T., Rybalka, N. & Friedl, T. Biological Soil Crusts: an Organizing Principle in Drylands 55–80 (Springer, 2016).

  • 33.

    Giraldo‐Silva, A., Nelson, C., Barger, N. N. & Garcia‐Pichel, F. Nursing biocrusts: isolation, cultivation, and fitness test of indigenous cyanobacteria. Restor. Ecol. 27, 793–803 (2019).

    Google Scholar 

  • 34.

    Koren, S. et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 27, 722–736 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 35.

    Kolmogorov, M. et al. metaFlye: scalable long-read metagenome assembly using repeat graphs. Nat. Methods 17, 1103–1110 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 36.

    Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 27, 824–834 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 37.

    Mikheenko, A., Saveliev, V. & Gurevich, A. MetaQUAST: evaluation of metagenome assemblies. Bioinformatics 32, 1088–1090 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 38.

    Howe, A. C. et al. Tackling soil diversity with the assembly of large, complex metagenomes. Proc. Natl Acad. Sci. USA 111, 4904–4909 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 39.

    Frank, J. A. et al. Improved metagenome assemblies and taxonomic binning using long-read circular consensus sequence data. Sci. Rep. 6, 1–10 (2016).

    Google Scholar 

  • 40.

    Hiraoka, S. et al. Metaepigenomic analysis reveals the unexplored diversity of DNA methylation in an environmental prokaryotic community. Nat. Commun. 10, 1–10 (2019).

    CAS 

    Google Scholar 

  • 41.

    Blin, K. et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 47, W81–W87 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 42.

    Garcia-Pichel, F., Loza, V., Marusenko, Y., Mateo, P. & Potrafka, R. M. Temperature drives the continental-scale distribution of key microbes in topsoil communities. Science 340, 1574–1577 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 43.

    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    CAS 

    Google Scholar 

  • 44.

    Nayfach, S. et al. A genomic catalog of Earth’s microbiomes. Nat. Biotechnol. 499–509 (2020).

  • 45.

    Fuqua, C. & Greenberg, E. P. Listening in on bacteria: acyl-homoserine lactone signalling. Nat. Rev. Mol. Cell Biol. 3, 685–695 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • 46.

    Ciemniecki, J. A. & Newman, D. K. The potential for redox-active metabolites to enhance or unlock anaerobic survival metabolisms in aerobes. J. Bacteriol. 202, 1–14 (2020).

    Google Scholar 

  • 47.

    Rajeev, L. et al. Dynamic cyanobacterial response to hydration and dehydration in a desert biological soil crust. ISME J. 7, 2178–2191 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 48.

    Nunes da Rocha, U. et al. Isolation of a significant fraction of non-phototroph diversity from a desert biological soil crust. Front. Microbiol. 6, 277 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 49.

    Felde, V. J. M. N. L., Peth, S., Uteau-Puschmann, D., Drahorad, S. & Felix-Henningsen, P. Soil microstructure as an under-explored feature of biological soil crust hydrological properties: case study from the NW Negev Desert. Biodivers. Conserv. 23, 1687–1708 (2014).

    Google Scholar 

  • 50.

    Bushnell, B. BBMap: a fast, accurate, splice-aware aligner. No. LBNL-7065E. (Lawrence Berkeley National Lab (LBNL), Berkeley, CA (United States), 2014).

  • 51.

    Donia, M. S., Ruffner, D. E., Cao, S. & Schmidt, E. W. Accessing the hidden majority of marine natural products through metagenomics. ChemBioChem. 12, 1230–1236 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 52.

    Van Der Maaten, L. Accelerating t-SNE using tree-based algorithms. J. Mach. Learn. Res. 15, 3221–3245 (2014).

    Google Scholar 

  • 53.

    Couradeau, E., Giraldo-Silva, A., De Martini, F. & Garcia-Pichel, F. Spatial segregation of the biological soil crust microbiome around its foundational cyanobacterium, Microcoleus vaginatus, and the formation of a nitrogen-fixing cyanosphere. Microbiome 7, 1–12 (2019).

    Google Scholar 

  • 54.

    Magne, F. et al. The firmicutes/bacteroidetes ratio: a relevant marker of gut dysbiosis in obese patients? Nutrients 12, 1474 (2020).

    CAS 
    PubMed Central 

    Google Scholar 

  • 55.

    Baran, R. et al. Exometabolite niche partitioning among sympatric soil bacteria. Nat. Commun. 6, 8289 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 56.

    Kupriyanova, E. V. et al. Extracellular β-class carbonic anhydrase of the alkaliphilic cyanobacterium Microcoleus chthonoplastes. J. Photochem. Photobiol. B: Biol. 103, 78–86 (2011).

    CAS 

    Google Scholar 

  • 57.

    Hernandez, M. & Newman, D. Extracellular electron transfer. Cell. Mol. Life Sci. 58, 1562–1571 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • 58.

    Karaoz, U. et al. Large blooms of Bacillales (Firmicutes) underlie the response to wetting of cyanobacterial biocrusts at various stages of maturity. MBio. 9, e01366–01316 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 59.

    Rodriguez-R, L. M., Gunturu, S., Tiedje, J. M., Cole, J. R. & Konstantinidis, K. T. Nonpareil 3: fast estimation of metagenomic coverage and sequence diversity. MSystems. 3, 1–9 (2018).

    Google Scholar 

  • 60.

    Kopylova, E., Noé, L. & Touzet, H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28, 3211–3217 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 61.

    Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 62.

    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 63.

    Schmieder, R. & Edwards, R. Quality control and preprocessing of metagenomic datasets. Bioinformatics 27, 863–864 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 64.

    Van der Walt, A. J. et al. Assembling metagenomes, one community at a time. BMC Genom. 18, 1–13 (2017).

    Google Scholar 

  • 65.

    Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinforma. 11, 119 (2010).

    Google Scholar 

  • 66.

    Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 67.

    Arkin, A. P. et al. KBase: the United States department of energy systems biology knowledgebase. Nat. Biotechnol. 36, 566 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 68.

    Kautsar, S. A. et al. MIBiG 2.0: a repository for biosynthetic gene clusters of known function. Nucleic Acids Res. 48, D454–D458 (2020).

    PubMed 

    Google Scholar 

  • 69.

    von Meijenfeldt, F. B., Arkhipova, K., Cambuy, D. D., Coutinho, F. H. & Dutilh, B. E. Robust taxonomic classification of uncharted microbial sequences and bins with CAT and BAT. Genome Biol. 20, 217 (2019).

    Google Scholar 

  • 70.

    Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 71.

    Kearse, M. et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 72.

    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    At UN climate change conference, trying to “keep 1.5 alive”

    Direct and indirect effects of roads on space use by jaguars in Brazil