in

Long term crop rotation effect on subsequent soybean yield explained by soil and root-associated microbiomes and soil health indicators

  • 1.

    Hartman, K. et al. Cropping practices manipulate abundance patterns of root and soil microbiome members paving the way to smart farming. Microbiome 6, 14 (2018).

    Article 

    Google Scholar 

  • 2.

    Berzsenyi, Z., Győrffy, B. & Lap, D. Effect of crop rotation and fertilisation on maize and wheat yields and yield stability in a long-term experiment. Eur. J. Agron. 13, 225–244. https://doi.org/10.1016/S1161-0301(00)00076-9 (2000).

    Article 

    Google Scholar 

  • 3.

    Körschens, M. The importance of long-term field experiments for soil science and environmental research: a review. Plant Soil Environ. 52, 1–8 (2006).

    Google Scholar 

  • 4.

    Zuber, S. M., Behnke, G., Nafziger, E. & Villamil, M. B. Crop rotation and tillage effects on soil physical and chemical properties in Illinois. Agron. J. 107, 971–978. https://doi.org/10.2134/agronj14.0465 (2015).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Stott, D. E. Recommended Soil Health Indicators and Associated Laboratory Procedures. National Soil Health Specialist, Soil Health Division, U.S. Department of Agriculture (USDA), Natural Resources Conservation Service (NRCS), Washington, D.C. (2019).

  • 6.

    Barrios, E. Soil biota, ecosystem services and land productivity. Ecol. Econ. 64, 269–285. https://doi.org/10.1016/j.ecolecon.2007.03.004 (2007).

    Article 

    Google Scholar 

  • 7.

    Garbeva, P., van Veen, J. A. & van Elsas, J. D. Microbial diversity in soil: selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annu. Rev. Phytopathol. 42, 243–270. https://doi.org/10.1146/annurev.phyto.42.012604.135455 (2004).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 8.

    Hatfield, J., Prueger, J. & Kustas, W. Spatial and temporal variation of energy and carbon fluxes in central Iowa. Agron. J. 99, 285–296. https://doi.org/10.2134/agronj2005.0116S (2007).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Lehman, R. M. et al. Understanding and enhancing soil biological health: the solution for reversing soil degradation. Sustainability 7, 988–1027. https://doi.org/10.3390/su7010988 (2015).

    Article 

    Google Scholar 

  • 10.

    Weil, R. R., Islam, K. R., Stine, M. A., Gruver, J. B. & Samson-Liebig, S. E. Estimating active carbon for soil quality assessment: a simplified method for laboratory and field use. Am. J. Alter. Agric. 18, 3–17. https://doi.org/10.1079/AJAA200228 (2003).

    Article 

    Google Scholar 

  • 11.

    Idowu, O. et al. Farmer-oriented assessment of soil quality using field, laboratory, and VNIR spectroscopy methods. Int. J. Plant-Soil Relatsh. 307, 243–253. https://doi.org/10.1007/s11104-007-9521-0 (2008).

    CAS 
    Article 

    Google Scholar 

  • 12.

    Gunapala, N. & Scow, K. M. Dynamics of soil microbial biomass and activity in conventional and organic farming systems. Soil Biol. Biochem. 30, 805–816. https://doi.org/10.1016/S0038-0717(97)00162-4 (1998).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Plaza-Bonilla, D., Álvaro-Fuentes, J. & Cantero-Martínez, C. Identifying soil organic carbon fractions sensitive to agricultural management practices. Soil Tillage Res. 139, 19–22. https://doi.org/10.1016/j.still.2014.01.006 (2014).

    Article 

    Google Scholar 

  • 14.

    Mirsky, S., Lanyon, L. & Needelman, B. Evaluating soil management using particulate and chemically labile soil organic matter fractions. Soil Sci. Soc. Am. J. 72, 180–185. https://doi.org/10.2136/sssaj2005.0279 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 15.

    Wright, S. F. & Upadhyaya, A. Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi. Soil Sci. 161, 575–586 (1996).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 16.

    Jan, M. T., Roberts, P., Tonheim, S. K. & Jones, D. L. Protein breakdown represents a major bottleneck in nitrogen cycling in grassland soils. Soil Biol. Biochem. 41, 2272–2282. https://doi.org/10.1016/j.soilbio.2009.08.013 (2009).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Nannipieri, P. & Eldor, P. The chemical and functional characterization of soil N and its biotic components. Soil Biol. Biochem. 41, 2357–2369. https://doi.org/10.1016/j.soilbio.2009.07.013 (2009).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Weintraub, M. N. & Schimel, J. P. Seasonal protein dynamics in Alaskan arctic tundra soils. Soil Biol. Biochem. 37, 1469–1475. https://doi.org/10.1016/j.soilbio.2005.01.005 (2005).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Ros, G. H., Temminghoff, E. J. M. & Hoffland, E. Nitrogen mineralization: a review and meta-analysis of the predictive value of soil tests. Eur. J. Soil Sci. 62, 162–173. https://doi.org/10.1111/j.1365-2389.2010.01318.x (2011).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Ros, G. H., Hanegraaf, M. C., Hoffland, E. & van Riemsdijk, W. H. Predicting soil N mineralization: relevance of organic matter fractions and soil properties. Soil Biol. Biochem. 43, 1714–1722. https://doi.org/10.1016/j.soilbio.2011.04.017 (2011).

    CAS 
    Article 

    Google Scholar 

  • 21.

    Chang, E.-H., Chung, R.-S. & Tsai, Y.-H. Effect of different application rates of organic fertilizer on soil enzyme activity and microbial population. Soil Sci. Plant Nutr. 53, 132–140. https://doi.org/10.1111/j.1747-0765.2007.00122.x (2007).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 22.

    Liebig, M., Carpenter-Boggs, L., Johnson, J. M. F., Wright, S. & Barbour, N. Cropping system effects on soil biological characteristics in the Great Plains. Renew. Agric. Food Syst. 21, 36–48. https://doi.org/10.1079/RAF2005124 (2006).

    Article 

    Google Scholar 

  • 23.

    Wright, S. & Upadhyaya, A. Comparison of N-linked oligosaccharides of glomalin from arbuscular mycorrhizal fungi and soils by capillary electrophoresis. Soil Biol. Biochem. 30, 1853–1857 (1998).

    CAS 
    Article 

    Google Scholar 

  • 24.

    Wright, S. F. & Upadhyaya, A. A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant Soil 198, 97–107 (1998).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Lovelock, C. E., Wright, S. F., Clark, D. A. & Ruess, R. W. Soil stocks of glomalin produced by arbuscular mycorrhizal fungi across a tropical rain forest landscape. J. Ecol. 92, 278–287. https://doi.org/10.1111/j.0022-0477.2004.00855.x (2004).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Emran, M., Gispert, M. & Pardini, G. Patterns of soil organic carbon, glomalin and structural stability in abandoned Mediterranean terraced lands. Eur. J. Soil Sci. 63, 637–649. https://doi.org/10.1111/j.1365-2389.2012.01493.x (2012).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Nichols, K. A. & Millar, J. Glomalin and soil aggregation under six management systems in the Northern Great Plains, USA. Open J. Soil Sci. 03(08), 5. https://doi.org/10.4236/ojss.2013.38043 (2013).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Rillig, M., Ramsey, P., Morris, S. & Paul, E. Glomalin, an arbuscular-mycorrhizal fungal soil protein, responds to land-use change. Int. J. Plant-Soil Relatsh. 253, 293–299. https://doi.org/10.1023/A:1024807820579 (2003).

    CAS 
    Article 

    Google Scholar 

  • 29.

    Klose, S. & Tabatabai, M. A. Response of phosphomonoesterases in soils to chloroform fumigation. J. Plant Nutr. Soil Sci. 165, 429–434. https://doi.org/10.1002/1522-2624(200208)165:4%3c429::AID-JPLN429%3e3.0.CO;2-S (2002).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Wang, X.-C. & Lu, Q. Beta-glucosidase activity in paddy soils of the Taihu Lake Region, China. Pedosphere 16, 118–124. https://doi.org/10.1016/S1002-0160(06)60033-7 (2006).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Wilson, D. B. Microbial diversity of cellulose hydrolysis. Curr. Opin. Microbiol. 14, 259–263. https://doi.org/10.1016/j.mib.2011.04.004 (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 32.

    Shewale, J. G. β-Glucosidase: Its role in cellulase synthesis and hydrolysis of cellulose. Int. J. Biochem. 14, 435–443. https://doi.org/10.1016/0020-711X(82)90109-4 (1982).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 33.

    Acosta-Martínez, V., Reicher, Z., Bischoff, M. & Turco, R. F. The role of tree leaf mulch and nitrogen fertilizer on turfgrass soil quality. Biol. Fertil. Soils 29, 55–61. https://doi.org/10.1007/s003740050524 (1999).

    Article 

    Google Scholar 

  • 34.

    Krogh, K. et al. Characterization and kinetic analysis of a thermostable GH3 β-glucosidase from Penicillium brasilianum. Appl. Microbiol. Biotechnol. 86, 143–154. https://doi.org/10.1007/s00253-009-2181-7 (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 35.

    Chen, M. et al. Isolation and characterization of a β-glucosidase from Penicillium decumbens and improving hydrolysis of corncob residue by using it as cellulase supplementation. Enzyme Microb. Technol. 46, 444–449. https://doi.org/10.1016/j.enzmictec.2010.01.008 (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 36.

    Günata, Z. & Vallier, M.-J. Production of a highly glucose-tolerant extracellular β-glucosidase by three Aspergillus strains. Biotechnol. Lett. 21, 219–223. https://doi.org/10.1023/A:1005407710806 (1999).

    Article 

    Google Scholar 

  • 37.

    Riou, C., Salmon, J.-M., Vallier, M.-J., Gunata, Z. & Barre, P. Purification, characterization, and substrate specificity of a novel highly glucose-tolerant beta -glucosidase from Aspergillus oryzae. Appl. Environ. Microbiol. 64, 3607 (1998).

    CAS 
    Article 

    Google Scholar 

  • 38.

    Tsukada, T., Igarashi, K., Yoshida, M. & Samejima, M. Molecular cloning and characterization of two intracellular β-glucosidases belonging to glycoside hydrolase family 1 from the basidiomycete Phanerochaete chrysosporium. Appl. Microbiol. Biotechnol. 73, 807–814. https://doi.org/10.1007/s00253-006-0526-z (2006).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 39.

    Yang, S., Wang, L., Yan, Q., Jiang, Z. & Li, L. Hydrolysis of soybean isoflavone glycosides by a thermostable β-glucosidase from Paecilomyces thermophila. Food Chem. 115, 1247–1252. https://doi.org/10.1016/j.foodchem.2009.01.038 (2009).

    CAS 
    Article 

    Google Scholar 

  • 40.

    Arévalo Villena, M., Úbeda Iranzo, J. F., Gundllapalli, S. B., Cordero Otero, R. R. & Briones Pérez, A. I. Characterization of an exocellular β-glucosidase from Debaryomyces pseudopolymorphus. Enzyme Microb. Technol. 39, 229–234. https://doi.org/10.1016/j.enzmictec.2005.10.018 (2006).

    CAS 
    Article 

    Google Scholar 

  • 41.

    Amouri, B. & Gargouri, A. Characterization of a novel β-glucosidase from a Stachybotrys strain. Biochem. Eng. J. 32, 191–197. https://doi.org/10.1016/j.bej.2006.09.022 (2006).

    CAS 
    Article 

    Google Scholar 

  • 42.

    Okamoto, K., Sugita, Y., Nishikori, N., Nitta, Y. & Yanase, H. Characterization of two acidic β-glucosidases and ethanol fermentation in the brown rot fungus Fomitopsis palustris. Enzyme Microb. Technol. 48, 359–364. https://doi.org/10.1016/j.enzmictec.2010.12.012 (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 43.

    Singhania, R. R., Patel, A. K., Sukumaran, R. K., Larroche, C. & Pandey, A. Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production. Biores. Technol. 127, 500–507. https://doi.org/10.1016/j.biortech.2012.09.012 (2013).

    CAS 
    Article 

    Google Scholar 

  • 44.

    Okamoto, K., Nakano, H., Yatake, T., Kiso, T. & Kitahata, S. Purification and some properties of a β-glucosidase from Flavobacterium johnsonae. Biosci. Biotechnol. Biochem. 64, 333–340. https://doi.org/10.1271/bbb.64.333 (2000).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 45.

    Spano, G. et al. A β-glucosidase gene isolated from wine Lactobacillus plantarum is regulated by abiotic stresses. J. Appl. Microbiol. 98, 855–861. https://doi.org/10.1111/j.1365-2672.2004.02521.x (2005).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 46.

    Mendes, R. et al. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332, 1097–1100. https://doi.org/10.1126/science.1203980 (2011).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 47.

    Crookston, R., Kurle, J., Copeland, P. J., Ford, J. H. & Lueschen, W. E. Rotational cropping sequence affects yield of corn and soybean. Agron. J. 83, 108–113 (1991).

    Article 

    Google Scholar 

  • 48.

    Meese, B. G., Carter, P. R., Oplinger, E. S. & Pendleton, J. W. Corn/soybean rotation effect as influenced by tillage, nitrogen, and hybrid/cultivar. J. Prod. Agric. 4, 74–80 (1991).

    Article 

    Google Scholar 

  • 49.

    Kelley, K. W., Long, J. H. & Todd, T. C. Long-term crop rotations affect soybean yield, seed weight, and soil chemical properties. Field Crop Res. 83, 41–50. https://doi.org/10.1016/S0378-4290(03)00055-8 (2003).

    Article 

    Google Scholar 

  • 50.

    Mourtzinis, S. et al. Corn and soybean yield response to tillage, rotation, and nematicide seed treatment. Crop Sci. 57, 1704–1712. https://doi.org/10.2135/cropsci2016.09.0792 (2017).

    Article 

    Google Scholar 

  • 51.

    Farmaha, B. S. et al. Rotation impact on on-farm yield and input-use efficiency in high-yield irrigated maize-soybean systems. Agron. J. 108, 2313–2321. https://doi.org/10.2134/agronj2016.01.0046 (2016).

    Article 

    Google Scholar 

  • 52.

    Crookston, R. K. & Kurle, J. E. Corn residue effect on the yield of corn and soybean grown in rotation. Agron. J. 81, 229–232. https://doi.org/10.2134/agronj1989.00021962008100020018x (1989).

    Article 

    Google Scholar 

  • 53.

    Whiting, K. R. & Crookston, R. K. Host-specific pathogens do not account for the corn-soybean rotation effect. Crop Sci. 33, 539–543. https://doi.org/10.2135/cropsci1993.0011183X003300030024x (1993).

    Article 

    Google Scholar 

  • 54.

    Copeland, P. J., Allmaras, R. R., Crookston, R. K. & Nelson, W. W. Corn-soybean rotation effects on soil water depletion. Agron. J. 85, 203–210. https://doi.org/10.2134/agronj1993.00021962008500020008x (1993).

    Article 

    Google Scholar 

  • 55.

    Li, J. et al. Soil-plant indices help explain legume response to crop rotation in a semiarid environment. Front. Plant Sci. https://doi.org/10.3389/fpls.2018.01488 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 56.

    Nickel, S. E., Crookston, R. K. & Russelle, M. P. Root growth and distribution are affected by corn-soybean cropping sequence. Agron. J. 87, 895–902. https://doi.org/10.2134/agronj1995.00021962008700050020x (1995).

    Article 

    Google Scholar 

  • 57.

    Bennett, A. J., Bending, G. D., Chandler, D., Hilton, S. & Mills, P. Meeting the demand for crop production: the challenge of yield decline in crops grown in short rotations. Biol. Rev. 87, 52–71. https://doi.org/10.1111/j.1469-185X.2011.00184.x (2012).

    Article 
    PubMed 

    Google Scholar 

  • 58.

    Johnson, N., Copeland, P. J., Crookston, R. & Pfleger, F. L. Mycorrhizae: possible explanation for yield decline with continuous corn and soybean. Agron. J. 84, 387–390 (1992).

    Article 

    Google Scholar 

  • 59.

    Chen, S., Porter, P. M., Reese, C. D. & Stienstra, W. C. Crop sequence effects on soybean cyst nematode and soybean and corn yields this research was supported by Minnesota soybean producers check-off funding through Minnesota research and promotion council and Minnesota agric. exp. stn.. Crop Sci. 41, 1843–1849. https://doi.org/10.2135/cropsci2001.1843 (2001).

    Article 

    Google Scholar 

  • 60.

    Grabau, Z. J. & Chen, S. Determining the role of plant-parasitic nematodes in the corn-soybean crop rotation yield effect using nematicide application: II. Soybean. Agron. J. 108, 1168–1179. https://doi.org/10.2134/agronj2015.0432 (2016).

    CAS 
    Article 

    Google Scholar 

  • 61.

    Hoss, M., Behnke, G., Davis, A., Nafziger, E. & Villamil, M. B. Short corn rotations do not improve soil quality. Compared with corn monocultures. Agron. J. 110, 1274–1288. https://doi.org/10.2134/agronj2017.11.0633 (2018).

    CAS 
    Article 

    Google Scholar 

  • 62.

    Plaza, C., Courtier-Murias, D., Fernández, J. M., Polo, A. & Simpson, A. J. Physical, chemical, and biochemical mechanisms of soil organic matter stabilization under conservation tillage systems: a central role for microbes and microbial by-products in C sequestration. Soil Biol. Biochem. 57, 124–134. https://doi.org/10.1016/j.soilbio.2012.07.026 (2013).

    CAS 
    Article 

    Google Scholar 

  • 63.

    Tardy, V. et al. Shifts in microbial diversity through land use intensity as drivers of carbon mineralization in soil. Soil Biol. Biochem. 90, 204–213. https://doi.org/10.1016/j.soilbio.2015.08.010 (2015).

    CAS 
    Article 

    Google Scholar 

  • 64.

    Tiedje, J. M., Asuming-Brempong, S., Nüsslein, K., Marsh, T. L. & Flynn, S. J. Opening the black box of soil microbial diversity. Appl. Soil. Ecol. 13, 109–122. https://doi.org/10.1016/S0929-1393(99)00026-8 (1999).

    Article 

    Google Scholar 

  • 65.

    Hussain, S., Ghaffar, A. & Aslam, M. Biological-control of macrophomina-phaseolina charcoal rot of sunflower and mung bean. J. Phytopathol. 130, 157–160. https://doi.org/10.1111/j.1439-0434.1990.tb01163.x (1990).

    Article 

    Google Scholar 

  • 66.

    Khan, A. N. et al. Molecular identification and genetic characterization of Macrophomina phaseolina strains causing pathogenicity on sunflower and chickpea. Front. Microbiol. 8, 1309. https://doi.org/10.3389/fmicb.2017.01309 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 67.

    Ramezani, M. et al. Soybean charcoal rot disease fungus Macrophomina phaseolina in Mississippi produces the phytotoxin (-)-botryodiplodin but no detectable phaseolinone. J. Nat. Prod. 70, 128–129. https://doi.org/10.1021/np060480t (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 68.

    Smith, L.J., Datnoff, L.E., Pernezny, K. & Schlub, R.L. Phylogenetic and pathogenic characterization of Corynespora cassiicola isolates. In II International Symposium on Tomato Diseases 808, 51–56 (2007)

  • 69.

    Deon, M. et al. Characterization of a cassiicolin-encoding gene from Corynespora cassiicola, pathogen of rubber tree (Hevea brasiliensis). Plant Sci. 185–186, 227–237. https://doi.org/10.1016/j.plantsci.2011.10.017 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 70.

    Videira, S. I. R. et al. Mycosphaerellaceae: chaos or clarity?. Stud. Mycol. 87, 257–421 (2017).

    CAS 
    Article 

    Google Scholar 

  • 71.

    Wijayawardene, N. N. et al. Outline of ascomycota: 2017. Fungal Divers. 88, 167–263. https://doi.org/10.1007/s13225-018-0394-8 (2018).

    Article 

    Google Scholar 

  • 72.

    Olofsson, J., Ericson, L., Torp, M., Stark, S. & Baxter, R. Carbon balance of Arctic tundra under increased snow cover mediated by a plant pathogen. Nat. Clim. Change 1, 220–223. https://doi.org/10.1038/Nclimate1142 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 73.

    Wells, L. D. & McManus, P. S. A photographic diagnostic guide for identification of the principal cranberry fruit rot pathogens. Plant Health Prog. https://doi.org/10.1094/php-2013-0729-01-dg (2013).

    Article 

    Google Scholar 

  • 74.

    Yeager, C. M. et al. Polysaccharide degradation capability of actinomycetales soil isolates from a semiarid grassland of the Colorado Plateau. Appl. Environ. Microbiol. https://doi.org/10.1128/aem.03020-16 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 75.

    Loria, R., Bukhalid, R. A., Fry, B. A. & King, R. R. Plant pathogenicity in the genus Streptomyces. Plant Dis. 81, 836–846. https://doi.org/10.1094/Pdis.1997.81.8.836 (1997).

    Article 
    PubMed 

    Google Scholar 

  • 76.

    Li, Y., Liu, J., Diaz-Cruz, G., Cheng, Z. & Bignell, D. R. D. Virulence mechanisms of plant-pathogenic Streptomyces species: an updated review. Microbiology 165, 1025–1040. https://doi.org/10.1099/mic.0.000818 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 77.

    Abdalla, M. H. Solubilization of rock phosphates by rhizobium and bradyrhizobium. Folia Microbiol. 39, 53–56. https://doi.org/10.1007/Bf02814530 (1994).

    CAS 
    Article 

    Google Scholar 

  • 78.

    Bargaz, A., Lyamlouli, K., Chtouki, M., Zeroual, Y. & Dhiba, D. Soil microbial resources for improving fertilizers efficiency in an integrated plant nutrient management system. Front Microbiol. https://doi.org/10.3389/fmicb.2018.01606 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 79.

    Moebius-Clune, B. N. Comprehensive Assessment of Soil Health: The Cornell Framework Manual (Cornell University, 2016).

    Google Scholar 

  • 80.

    Deng, S. P. & Tabatabai, M. A. Cellulase activity of soils. Soil Biol. Biochem. 26, 1347–1354. https://doi.org/10.1016/0038-0717(94)90216-X (1994).

    CAS 
    Article 

    Google Scholar 

  • 81.

    Riesenfeld, C. S., Goodman, R. M. & Handelsman, J. Uncultured soil bacteria are a reservoir of new antibiotic resistance genes. Environ. Microbiol. 6, 981–989 (2004).

    CAS 
    Article 

    Google Scholar 

  • 82.

    Gohl, D. et al. Systematic improvement of amplicon marker gene methods for increased accuracy in microbiome studies. Nat. Biotechnol. 34, 942–949. https://doi.org/10.1038/nbt.3601 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 83.

    R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing (Vienna, Austria, 2020).

  • 84.

    Bates, D., Machler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article 

    Google Scholar 

  • 85.

    Bolyen, E. et al. Qiime 2: reproducible, interactive, scalable, and extensible microbiome data science. Report No. 2167–9843, (PeerJ Preprints, 2018).

  • 86.

    Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583. https://doi.org/10.1038/nmeth.3869 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 87.

    Mandal, S. et al. Analysis of composition of microbiomes: a novel method for studying microbial composition. Microb. Ecol. Health Dis. https://doi.org/10.3402/mehd.v26.27663 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 88.

    Morton, J. T. et al. Balance trees reveal microbial niche differentiation. mSystems https://doi.org/10.1128/mSystems.00162-16 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 89.

    Nilsson, R. H. et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47, D259–D264. https://doi.org/10.1093/nar/gky1022 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 90.

    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590-596. https://doi.org/10.1093/nar/gks1219 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 91.

    Pedregosa, F. et al. Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011).

    MathSciNet 
    MATH 

    Google Scholar 

  • 92.

    Kruskal, W. H. & Wallis, W. A. Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 47, 583–621. https://doi.org/10.1080/01621459.1952.10483441 (1952).

    Article 
    MATH 

    Google Scholar 


  • Source: Ecology - nature.com

    Isolation and screening of multifunctional phosphate solubilizing bacteria and its growth-promoting effect on Chinese fir seedlings

    How to get salt out of water: Make it self-eject