in

Long-term patterns of cave-exiting activity of hibernating bats in western North America

  • 1.

    Hope, P. R. & Jones, G. Warming up for dinner: Torpor and arousal in hibernating Natterer’s bats (Myotis nattereri) studied by radio telemetry. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 182, 569–578. https://doi.org/10.1007/s00360-011-0631-x (2012).

    Article 

    Google Scholar 

  • 2.

    Czenze, Z. J., Jonasson, K. A. & Willis, C. K. R. Thrifty females, frisky males: Winter energetics of hibernating bats from a cold climate. Physiol. Biochem. Zool. 90, 502–511. https://doi.org/10.1086/692623 (2017).

    Article 
    PubMed 

    Google Scholar 

  • 3.

    Reynolds, D. S., Shoemaker, K., von Oettingen, S. & Najjar, S. High rates of winter activity and arousals in two New England bat species: Implications for a reduced white-nose syndrome impact?. Northeast. Nat. 24, B188–B208 (2017).

    Article 

    Google Scholar 

  • 4.

    Kunz, T. H. & Martin, R. A. Plecotus townsendii. Mamm. Species 175, 1–6 (1982).

    Google Scholar 

  • 5.

    Twente, J. W. Aspects of a population study of cavern-dwelling bats. J. Mamm. 36, 379–390 (1955).

    Article 

    Google Scholar 

  • 6.

    Humphrey, S. R. & Kunz, T. H. Ecology of a Pleistocene relict, the western big-eared bat (Plecotus townsendii), in the southern Great Plains. J. Mamm. 57, 470–494. https://doi.org/10.2307/1379297 (1976).

    Article 

    Google Scholar 

  • 7.

    Czenze, Z. J., Park, A. D. & Willis, C. K. R. Staying cold through dinner: Cold-climate bats rewarm with conspecifics but not sunset during hibernation. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 183, 859–866. https://doi.org/10.1007/s00360-013-0753-4 (2013).

    Article 

    Google Scholar 

  • 8.

    Pearson, O. P., Koford, M. R. & Pearson, A. K. Reproduction of the lump-nosed bat (Corynorhinus rafinesquei) in California. J. Mamm. 33, 273–320 (1952).

    Article 

    Google Scholar 

  • 9.

    Johnson, J. S., Lacki, M. J., Thomas, S. C. & Grider, J. F. Frequent arousals from winter torpor in Rafinesque’s big-eared bat (Corynorhinus rafinesquii). PLoS ONE 7, e49754. https://doi.org/10.1371/journal.pone.0049754 (2012).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 10.

    Lausen, C. L. & Barclay, R. M. R. Winter bat activity in the Canadian prairies. Can. J. Zool.-Rev. Can. Zool. 84, 1079–1086. https://doi.org/10.1139/z06-093 (2006).

    Article 

    Google Scholar 

  • 11.

    Thomas, D. W. & Cloutier, D. Evaporative water-loss by hibernating little brown bats, Myotis lucifugus. Physiol. Zool. 65, 443–456 (1992).

    Article 

    Google Scholar 

  • 12.

    Ben-Hamo, M., Munoz-Garcia, A., Williams, J. B., Korine, C. & Pinshow, B. Waking to drink: Rates of evaporative water loss determine arousal frequency in hibernating bats. J. Exp. Biol. 216, 573–577. https://doi.org/10.1242/jeb.078790 (2013).

    Article 
    PubMed 

    Google Scholar 

  • 13.

    Czenze, Z. J. & Willis, C. K. R. Warming up and shipping out: Arousal and emergence timing in hibernating little brown bats (Myotis lucifugus). J. Comp. Physiol. B-Biochem. Syst. Environ. Physiol. 185, 575–586. https://doi.org/10.1007/s00360-015-0900-1 (2015).

    Article 

    Google Scholar 

  • 14.

    Choate, J. R. & Anderson, J. M. Bats of jewel cave national monument, South Dakota. Prairie Nat. 29, 39–47 (1997).

    Google Scholar 

  • 15.

    Klüg-Baerwald, B. J., Gower, L. E., Lausen, C. L. & Brigham, R. M. Environmental correlates and energetics of winter flight by bats in southern Alberta, Canada. Can. J. Zool. 94, 829–836. https://doi.org/10.1139/cjz-2016-0055 (2016).

    Article 

    Google Scholar 

  • 16.

    Johnson, J. S. et al. Migratory and winter activity of bats in Yellowstone National Park. J. Mamm. 98, 211–221. https://doi.org/10.1093/jmammal/gyw175 (2017).

    Article 

    Google Scholar 

  • 17.

    Norquay, K. & Willis, C. Hibernation phenology of Myotis lucifugus. J. Zool. 294, 85–92 (2014).

    Article 

    Google Scholar 

  • 18.

    Barclay, R. M. et al. Variation in the reproductive rate of bats. Can. J. Zool. 82, 688–693 (2004).

    Article 

    Google Scholar 

  • 19.

    Jonasson, K. A. & Willis, C. K. Changes in body condition of hibernating bats support the thrifty female hypothesis and predict consequences for populations with white-nose syndrome. PLoS ONE 6, e21061. https://doi.org/10.1371/journal.pone.0021061 (2011).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 20.

    Speakman, J. R., Webb, P. I. & Racey, P. A. Effects of disturbance on the energy expenditure of hibernating bats. J. Appl. Ecol. 28, 1087–1104. https://doi.org/10.2307/2404227 (1991).

    Article 

    Google Scholar 

  • 21.

    Reeder, D. M., Field, K. A. & Slater, M. H. Balancing the costs of wildlife research with the benefits of understanding a panzootic disease, white-nose syndrome. ILAR J. 56, 275–282. https://doi.org/10.1093/ilar/ilv035 (2015).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Boyles, J. G. Benefits of knowing the costs of disturbance to hibernating bats. Wildl. Soc. Bull. 41, 388–392. https://doi.org/10.1002/wsb.755 (2017).

    Article 

    Google Scholar 

  • 23.

    Thomas, D. W. Hibernating bats are sensitive to nontactile human disturbance. J. Mamm. 76, 940–946. https://doi.org/10.2307/1382764 (1995).

    Article 

    Google Scholar 

  • 24.

    Furey, N. M. & Racey, P. A. Bats in the Anthropocene: Conservation of Bats in a Changing World 463–500 (Springer, 2016).

    Google Scholar 

  • 25.

    Sheffield, S. R., Shaw, J. H., Heidt, G. A. & McClenaghan, L. R. Guidelines for the protection of bat roosts. J. Mamm. 73, 707–710 (1992).

    Google Scholar 

  • 26.

    Jones, G., Jacobs, D. S., Kunz, T. H., Willig, M. R. & Racey, P. A. Carpe noctem: The importance of bats as bioindicators. Endang. Species Res. 8, 93–115 (2009).

    Article 

    Google Scholar 

  • 27.

    Blehert, D. S. et al. Bat white-nose syndrome: An emerging fungal pathogen?. Science 323, 227. https://doi.org/10.1126/science.1163874 (2009).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 28.

    Foley, J., Clifford, D., Castle, K., Cryan, P. & Ostfeld, R. S. Investigating and managing the rapid emergence of white-nose syndrome, a novel, fatal, infectious disease of hibernating bats. Conserv. Biol. 25, 223–231. https://doi.org/10.1111/j.1523-1739.2010.01638.x (2011).

    Article 
    PubMed 

    Google Scholar 

  • 29.

    Ingersoll, T. E., Sewall, B. J. & Amelon, S. K. Effects of white-nose syndrome on regional population patterns of 3 hibernating bat species. Conserv. Biol. 30, 1048–1059. https://doi.org/10.1111/cobi.12690 (2016).

    Article 
    PubMed 

    Google Scholar 

  • 30.

    Minnis, A. M. & Lindner, D. L. Phylogenetic evaluation of Geomyces and allies reveals no close relatives of Pseudogymnoascus destructans, comb. nov., in bat hibernacula of eastern North America. Fungal Biol. 117, 638–649. https://doi.org/10.1016/j.funbio.2013.07.001 (2013).

    Article 
    PubMed 

    Google Scholar 

  • 31.

    Lorch, J. M. et al. Experimental infection of bats with Geomyces destructans causes white-nose syndrome. Nature 480, 376 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 32.

    Verant, M. L. et al. White-nose syndrome initiates a cascade of physiologic disturbances in the hibernating bat host. BMC Physiol. 14, 10 (2014).

    Article 

    Google Scholar 

  • 33.

    Warnecke, L. et al. Inoculation of bats with European Geomyces destructans supports the novel pathogen hypothesis for the origin of white-nose syndrome. Proc. Natl. Acad. Sci. U.S.A. 109, 6999–7003. https://doi.org/10.1073/pnas.1200374109 (2012).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 34.

    Lilley, T. M. et al. White-nose syndrome survivors do not exhibit frequent arousals associated with Pseudogymnoascus destructans infection. Front. Zool. https://doi.org/10.1186/s12983-016-0143-3 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 35.

    McGuire, L. P., Mayberry, H. W. & Willis, C. K. R. White-nose syndrome increases torpid metabolic rate and evaporative water loss in hibernating bats. Am. J. Physiol.-Regulat. Integr. Compar. Physiol. 313, R680–R686. https://doi.org/10.1152/ajpregu.00058.2017 (2017).

    CAS 
    Article 

    Google Scholar 

  • 36.

    Knudsen, G. R., Dixon, R. D. & Amelon, S. K. Potential spread of white-nose syndrome of bats to the Northwest: Epidemiological considerations. Northwest Sci. 87, 292–306. https://doi.org/10.3955/046.087.0401 (2013).

    Article 

    Google Scholar 

  • 37.

    Bernard, R. F. & McCracken, G. F. Winter behavior of bats and the progression of white-nose syndrome in the southeastern United States. Ecol. Evol. 7, 1487–1496. https://doi.org/10.1002/ece3.2772 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 38.

    Cheng, T. L. et al. Higher fat stores contribute to persistence of little brown bat populations with white-nose syndrome. J. Anim. Ecol. 88, 591–600 (2019).

    Article 

    Google Scholar 

  • 39.

    Turner, J. M. et al. Conspecific disturbance contributes to altered hibernation patterns in bats with white-nose syndrome. Physiol. Behav. 140, 71–78 (2015).

    CAS 
    Article 

    Google Scholar 

  • 40.

    Blazek, J. et al. Numerous cold arousals and rare arousal cascades as a hibernation strategy in European Myotis bats. J. Therm. Biol 82, 150–156. https://doi.org/10.1016/j.jtherbio.2019.04.002 (2019).

    Article 
    PubMed 

    Google Scholar 

  • 41.

    Lorch, J. M. et al. First detection of bat white-nose syndrome in Western North America. mSphere 1(4), e00148. https://doi.org/10.1128/mSphere.00148-16 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 42.

    Weller, T. J. et al. A review of bat hibernacula across the western United States: Implications for white-nose syndrome surveillance and management. PLoS ONE https://doi.org/10.1371/journal.pone.0205647 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 43.

    Whiting, J. C. et al. Bat hibernacula in caves of southern Idaho: Implications for monitoring and management. West. N. Am. Nat. 78, 165–173 (2018).

    Article 

    Google Scholar 

  • 44.

    Whiting, J. C. et al. Long-term bat abundance in sagebrush steppe. Sci. Rep. 8, 12288 (2018).

    ADS 
    Article 

    Google Scholar 

  • 45.

    Call, R. S. et al. Maternity roosts of Townsend’s big-eared bats in lava tube caves of southern Idaho. Northwest Sci. 92, 158–165 (2018).

    ADS 
    Article 

    Google Scholar 

  • 46.

    Clark, B. S., Clark, B. K. & Leslie, D. M. Seasonal variation in activity patterns of the endangered Ozark big-eared bat (Corynorhinus townsendii ingens). J. Mamm. 83, 590–598. https://doi.org/10.1644/1545-1542(2002)083%3c0590:sviapo%3e2.0.co;2 (2002).

    Article 

    Google Scholar 

  • 47.

    French, A. R. The patterns of mammalian hibernation. Am. Sci. 76, 568–575 (1988).

    ADS 

    Google Scholar 

  • 48.

    Reynolds, T. D., Connelly, J. W., Halford, D. K. & Arthur, W. J. Vertebrate fauna of the Idaho National Environmental Research Park. Gt. Basin Nat. 46, 513–527 (1986).

    Google Scholar 

  • 49.

    Genter, D. L. Wintering bats of the upper Snake River Plain: Occurrence in lava-tube caves. Gt. Basin Nat. 46, 241–244 (1986).

    Google Scholar 

  • 50.

    Gillies, K. E., Murphy, P. J. & Matocq, M. D. Hibernacula characteristics of Townsend’s big-eared bats in southeastern Idaho. Nat. Areas J. 34, 24–30 (2014).

    Article 

    Google Scholar 

  • 51.

    Sikes, R. S. et al. Guidelines of the American Society of Mammalogists for the use of wild mammals in research and education. J. Mamm. 97(663–688), 2016. https://doi.org/10.1093/jmammal/gyw078 (2016).

    Article 

    Google Scholar 

  • 52.

    Schwab, N. A. & Mabee, T. J. Winter acoustic activity of bats in Montana. Northwest. Nat. 95, 13–27 (2014).

    Article 

    Google Scholar 

  • 53.

    Britzke, E. R., Slack, B. A., Armstrong, M. P. & Loeb, S. C. Effects of orientation and weatherproofing on the detection of bat echolocation calls. J. Fish Wildl. Manage. 1, 136–141. https://doi.org/10.3996/072010-jfwm-025 (2010).

    Article 

    Google Scholar 

  • 54.

    Skalak, S. L., Sherwin, R. E. & Brigham, R. M. Sampling period, size and duration influence measures of bat species richness from acoustic surveys. Methods Ecol. Evol. 3, 490–502. https://doi.org/10.1111/j.2041-210X.2011.00177.x (2012).

    Article 

    Google Scholar 

  • 55.

    Miller, B. W. A method for determining relative activity of free flying bats using a new activity index for acoustic monitoring. Acta Chiropt. 3, 93–105 (2001).

    Google Scholar 

  • 56.

    Nocera, T., Ford, W. M., Silvis, A. & Dobony, C. A. Patterns of acoustical activity of bats prior to and 10 years after WNS on Fort drum army installation, New York. Glob. Ecol. Conserv. https://doi.org/10.1016/j.gecco.2019.e00633 (2019).

    Article 

    Google Scholar 

  • 57.

    Britzke, E. R., Gillam, E. H. & Murray, K. L. Current state of understanding of ultrasonic detectors for the study of bat ecology. Acta Theriol. 58, 109–117. https://doi.org/10.1007/s13364-013-0131-3 (2013).

    Article 

    Google Scholar 

  • 58.

    O’Farrell, M. J., Miller, B. W. & Gannon, W. L. Qualitative identification of free-flying bats using the Anabat detector. J. Mamm. 80, 11–23. https://doi.org/10.2307/1383203 (1999).

    Article 

    Google Scholar 

  • 59.

    Whiting, J. C., Doering, B. & Pennock, D. Acoustic surveys for local, free-flying bats in zoos: An engaging approach for bat education and conservation. J. Bat Res. Conserv. 12, 94–99. https://doi.org/10.14709/BarbJ.12.1.2019.12 (2019).

    Article 

    Google Scholar 

  • 60.

    O’Farrell, M. J. & Gannon, W. L. A comparison of acoustic versus capture techniques for the inventory of bats. J. Mamm. 80, 24–30. https://doi.org/10.2307/1383204 (1999).

    Article 

    Google Scholar 

  • 61.

    Stahlschmidt, P. & Bruhl, C. A. Bats as bioindicators—The need of a standardized method for acoustic bat activity surveys. Methods Ecol. Evol. 3, 503–508. https://doi.org/10.1111/j.2041-210X.2012.00188.x (2012).

    Article 

    Google Scholar 

  • 62.

    Avery, M. I. Winter activity of pipistrelle bats. J. Anim. Ecol. 54, 721–738. https://doi.org/10.2307/4374 (1985).

    Article 

    Google Scholar 

  • 63.

    McCulloch, C. E. & Neuhaus, J. M. Generalized linear mixed models. In Encyclopedia of Biostatistics (eds Armitage, P. & Colton, T.) (Wiley, 2005).

    Google Scholar 

  • 64.

    Nelder, J. A. & Wedderburn, R. W. Generalized linear models. J. R. Stat. Soc. Ser. A (Gen.) 135, 370–384 (1972).

    Article 

    Google Scholar 

  • 65.

    Hardin, J. W. & Hilbe, J. M. Generalized Linear Models and Extensions (Stata Press, 2007).

    Google Scholar 

  • 66.

    Consul, P. & Famoye, F. Generalized Poisson regression model. Commun. Stat. Theory Methods 21, 89–109 (1992).

    Article 

    Google Scholar 

  • 67.

    Aho, K. A. Foundational and Applied Statistics for Biologists using R (CRC Press, 2013).

    Google Scholar 

  • 68.

    Akaike, H. Selected Papers of Hirotugu Akaike 199–213 (Springer, 1998).

    Google Scholar 

  • 69.

    Burnham, K. P. & Anderson, D. A. Model Selection and Multimodel Inference: A practical Information-Theoretic Approach 2nd edn. (Springer, 2002).

    Google Scholar 

  • 70.

    RCoreTeam. R: A Language and Environment for Statistical Computing (2020).

  • 71.

    Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S-PLUS (Springer, 2013).

    Google Scholar 

  • 72.

    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).

    Article 

    Google Scholar 

  • 73.

    Perkins, J. M., Barss, J. M. & Peterson, J. Winter records of bats in Oregon and Washington. Northwest. Nat. 71, 59–62. https://doi.org/10.2307/3536594 (1990).

    Article 

    Google Scholar 

  • 74.

    Nagorsen, D. W. et al. Winter bat records for British Columbia. Northwest Nat. 74, 61–66 (1993).

    Article 

    Google Scholar 

  • 75.

    Hayman, D. T., Cryan, P. M., Fricker, P. D. & Dannemiller, N. G. Long-term video surveillance and automated analyses reveal arousal patterns in groups of hibernating bats. Methods Ecol. Evol. 8, 1813–1821 (2017).

    Article 

    Google Scholar 

  • 76.

    Boyles, J. G., Dunbar, M. B. & Whitaker, J. O. Activity following arousal in winter in North American vespertilionid bats. Mamm. Rev. 36, 267–280. https://doi.org/10.1111/j.1365-2907.2006.00095.x (2006).

    Article 

    Google Scholar 

  • 77.

    Speakman, J. R. & Racey, P. A. Hibernal ecology of the pipistrelle bat: Energy expenditure, water requirements and mass-loss, implications for survial and the function of winter emergence flights. J. Anim. Ecol. 58, 797–813. https://doi.org/10.2307/5125 (1989).

    Article 

    Google Scholar 

  • 78.

    Lawrence, B. D. & Simmons, J. A. Measurements of atmospheric attenuation at ultrasonic frequencies and the significance for echolocation by bats. J. Acoust. Soc. Am. 71, 585–590 (1982).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 79.

    Dunbar, M. B. & Tomasi, T. E. Arousal patterns, metabolic rate, and an energy budget of eastern red bats (Lasiurus borealis) in winter. J. Mamm. 87, 1096–1102. https://doi.org/10.1644/05-mamm-a-254r3.1 (2006).

    Article 

    Google Scholar 

  • 80.

    Ford, W. M., Britzke, E. R., Dobony, C. A., Rodrigue, J. L. & Johnson, J. B. Patterns of acoustical activity of bats prior to and following white-nose syndrome occurrence. J. Fish Wildl. Manage. 2, 125–134. https://doi.org/10.3996/042011-jfwm-027 (2011).

    Article 

    Google Scholar 

  • 81.

    Bernard, R. F., Foster, J. T., Willcox, E. V., Parise, K. L. & McCracken, G. F. Molecular detection of the causative agent of white-nose syndrome on Rafinesque’s big-eared bats (Corynorhinus rafinesquii) and two species of migratory bats in the southeastern USA. J. Wildl. Dis. 51, 519–522. https://doi.org/10.7589/2014-08-202 (2015).

    Article 
    PubMed 

    Google Scholar 

  • 82.

    Dzal, Y., McGuire, L. P., Veselka, N. & Fenton, M. B. Going, going, gone: the impact of white-nose syndrome on the summer activity of the little brown bat (Myotis lucifugus). Biol. Lett. 7, 392–394 (2010).

    Article 

    Google Scholar 

  • 83.

    Brooks, R. T. Declines in summer bat activity in central New England 4 years following the initial detection of white-nose syndrome. Biodivers. Conserv. 20, 2537–2541. https://doi.org/10.1007/s10531-011-9996-0 (2011).

    Article 

    Google Scholar 

  • 84.

    Holloway, G. L. & Barclay, R. M. R. Myotis ciliolabrum. Mamm. Species 670, 1–5. https://doi.org/10.1644/1545-1410(2001)670%3c0001:mc%3e2.0.co;2 (2001).

    Article 

    Google Scholar 

  • 85.

    Halsall, A. L., Boyles, J. G. & Whitaker, J. O. Jr. Body temperature patterns of big brown bats during winter in a building hibernaculum. J. Mamm. 93, 497–503 (2012).

    Article 

    Google Scholar 

  • 86.

    Paige, K. N. Bats and barometric pressure: conserving limited energy and tracking insects from the roost. Funct. Ecol. 9, 463–467 (1995).

    Article 

    Google Scholar 

  • 87.

    Frick, W. F. Acoustic monitoring of bats, considerations of options for long-term monitoring. Therya 4, 69–78 (2013).

    ADS 
    Article 

    Google Scholar 

  • 88.

    Whitaker, J. O. & Rissler, L. J. Winter activity of bats at a mine entrance in Vermillion County, Indiana. Am. Midl. Nat. 127, 52–59. https://doi.org/10.2307/2426321 (1992).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Negative emissions, positive economy

    Individual US diets show wide variation in water scarcity footprints