Lackner S, Gilbert EM, Vlaeminck SE, Joss A, Horn H, van Loosdrecht MCM. Full-scale partial nitritation/anammox experience – an application survey. Water Res. 2014;55:292–303.
Google Scholar
Ali M, Okabe S. Anammox-based technologies for nitrogen removal: Advances in process start-up and remaining issues. Chemosphere. 2015;141:144–53.
Google Scholar
Ni S, Sung S, Yue Q, Gao B. Substrate removal evaluation of granular anammox process in a pilot-scale upflow anaerobic sludge blanket reactor. Ecol Eng 2012;38:30–36.
Google Scholar
Wang B, Peng Y, Guo Y, Yuan Y, Zhao M, Wang S. Impact of partial nitritation degree and C/N ratio on simultaneous sludge fermentation, denitrification and anammox process. Bioresour Technol. 2016;219:411–9.
Google Scholar
Zhang L, Narita Y, Gao L, Ali M, Oshiki M, Okabe S. Maximum specific growth rate of anammox bacteria revisited. Water Res. 2017;116:296–303.
Google Scholar
Zhang L, Okabe S. Ecological niche differentiation among anammox bacteria. Water Res. 2020;171:115468.
Google Scholar
Sun W, Xu MY, Wu WM, Guo J, Xia CY, Sun GP, et al. Molecular diversity and distribution of anammox community in sediments of the Dongjiang River, a drinking water source of Hong Kong. J Appl Microbiol. 2014;116:464–76.
Google Scholar
Zhu GB, Wang SY, Wang WD, Wang Y, Zhou LL, Jiang B, et al. Hotspots of anaerobic ammonium oxidation at land-freshwater interfaces. Nat Geosci. 2013;6:103–7.
Google Scholar
Kuypers MMM, Lavik G, Woebken D, Schmid M, Fuchs BM, Amann R, et al. Massive nitrogen loss from the Benguela upwelling system through anaerobic ammonium oxidation. Proc Natl Acad Sci USA. 2005;102:6478–83.
Google Scholar
Schmid M, Risgaard-Petersen N, van de Vossenberg J, Kuypers MMM, Lavik G, Petersen J, et al. Anaerobic ammonium-oxidizing bacteria in marine environments: widespread occurrence but low diversity. Environ Microbiol. 2007;9:1476–84.
Google Scholar
Dalsgaard T, Canfield DE, Petersen J, Thamdrup B, Acuña-González J. N2 production by the anammox reaction in the anoxic water column of Golfo Dulce, Costa Rica. Nature. 2003;422:606–8.
Google Scholar
Kuypers MMM, Olav Sliekers A, Lavik G, Schmid M, Jørgensen BB, Gijs Kuenen J, et al. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature. 2003;422:608–11.
Google Scholar
Humbert S, Tarnawski S, Fromin N, Mallet MP, Aragno M, Zopfi J. Molecular detection of anammox bacteria in terrestrial ecosystems: distribution and diversity. ISME J. 2010;4:450–4.
Google Scholar
Zhu GB, Wang SY, Wang Y, Wang CX, Risgaard-Petersen N, Jetten MSM, et al. Anaerobic ammonia oxidation in a fertilized paddy soil. ISME J. 2011;5:1905–12.
Google Scholar
Oshiki M, Satoh H, Okabe S. Ecology and physiology of anaerobic ammonium oxidizing bacteria. Environ Microbiol. 2016;18:2784–96.
Google Scholar
Sonthiphand P, Hall MW, Neufeld JD. Biogeography of anaerobic ammonia-oxidizing (anammox) bacteria. Front Microbiol. 2014;5:1–14.
Google Scholar
van Bodegom P. Microbial maintenance: A critical review on its quantification. Microb Ecol. 2007;53:513–23.
Google Scholar
Wang G, Post WM. A theoretical reassessment of microbial maintenance and implications for microbial ecology modeling. FEMS Microbiol Ecol. 2012;81:610–7.
Google Scholar
Overkamp W, Ercan O, Herber M, van Maris AJA, Kleerebezem M, Kuipers OP. Physiological and cell morphology adaptation of Bacillus subtilis at near-zero specific growth rates: a transcriptome analysis. Environ Microbiol. 2015;17:346–63.
Google Scholar
Ma X, Wang Y, Zhou S, Yan Y, Lin X, Wu M. Endogenous metabolism of anaerobic ammonium oxidizing bacteria in response to short-term anaerobic and anoxic starvation stress. Chem Eng J. 2017;313:1233–41.
Google Scholar
Ma X, Wang Y. Anammox bacteria exhibit capacity to withstand long-term starvation stress: a proteomic-based investigation of survival mechanisms. Chemosphere. 2018;211:952–61.
Google Scholar
Xing B-S, Guo Q, Jiang X-Y, Chen Q-Q, He M-M, Wu L-M, et al. Long-term starvation and subsequent reactivation of anaerobic ammonium oxidation (anammox) granules. Chem Eng J. 2016;287:575–84.
Google Scholar
Wang Q, Song K, Hao X, Wei J, Pijuan M, van Loosdrecht MCM, et al. Evaluating death and activity decay of Anammox bacteria during anaerobic and aerobic starvation. Chemosphere. 2018;201:25–31.
Google Scholar
Lopez C, Pons MN, Morgenroth E. Endogenous processes during long-term starvation in activated sludge performing enhanced biological phosphorous removal. Water Res. 2006;40:1519–30.
Google Scholar
Tappe W, Laverman A, Bohland M, Braster M, Rittershaus S, Groeneweg J, et al. Maintenance energy demand and starvation recovery dynamics of Nitrosomonas europaea and Nitrobacter winogradskyi cultivated in a retentostat with complete biomass retention. Appl Environ Microbiol. 1999;65:2471–7.
Google Scholar
Vos T, Hakkaart XDV, de Hulster EAF, van Maris AJA, Pronk JT, Daran-Lapujade P. Maintenance-energy requirements and robustness of Saccharomyces cerevisiae at aerobic near-zero specific growth rates. Micro Cell Fact. 2016;15:111.
Google Scholar
Ali M, Oshiki M, Awata T, Isobe K, Kimura Z, Yoshiaki H, et al. Physiological characterization of anaerobic ammonium oxidizing bacterium “Candidatus Jettenia caeni”. Environ Microbiol. 2015;17:2172–89.
Google Scholar
Narita Y, Zhang L, Kimura, Ali M, Fujii T, Okabe S. Enrichment and physiological characterization of an anaerobic ammonium-oxidizing bacterium “Candidatus Brocadia sapporoensis”. Syst Appl Microbiol. 2017;40:448–57.
Google Scholar
Oshiki M, Shimokawa M, Fujii N, Satoh H, Okabe S. Physiological characteristics of the anaerobic ammonium-oxidizing bacterium “Candidatus Brocadia sinica”. Microbiol. 2011;157:1706–13.
Google Scholar
Okabe, S, Shafdar, AA, Kobayashi, K, Zhang, L, and Oshiki, M. Glycogen metabolism of the anammox bacterium “Candidatus Brocadia sinica” ISME J. 2020; https://doi.org/10.1038/s41396-020-00850-5.
van der Star WRL, Miclea AI, van Dongen UGJM, Muyzer G, Picioreanu C, van Loosdrecht MCM. The membrane bioreactor: a novel tool to grow anammox bacteria as free cells. Biotechnol Bioeng. 2008;101:286–94.
Google Scholar
Zhang L, Okabe S. Rapid cultivation of free-living planktonic anammox cells. Water Res. 2017;127:204–10.
Google Scholar
Oshiki M, Awata T, Kindaichi T, Satoh H, Okabe S. Cultivation of planktonic anaerobic ammonium oxidation (Anammox) bacteria using membrane bioreactor. Microbes Environ. 2013;28:436–43.
Google Scholar
Awata T, Oshiki M, Kindaichi T, Ozaki N, Ohashi A, Okabe S. Physiological characterization of an anaerobic ammonium-oxidizing bacterium belonging to the “Candidatus Scalindua” group. Appl Environ Microbiol. 2013;79:4145–8.
Google Scholar
Zhang L, Narita Y, Gao L, Ali M, Oshiki M, Ishii S, et al. Microbial competition among anammox baxteria in nitrite-limited bioreactors. Water Res. 2017;125:249–58.
Google Scholar
Graaf AA, Van DE, Bruijn PDE, Robertson LA, Jetten MSM, Kuenen JG. Autotrophic growth of anaerobic in a fluidized bed reactor. Microbiol. 1996;142:2187–96.
Google Scholar
Kindaichi T, Awata T, Suzuki Y, Tanabe K, Hatamoto M, Ozaki N, et al. Enrichment using an up-flow column reactor and community structure of marine anammox bacteria from coastal sediment. Microbes Environ. 2011;26:67–73.
Google Scholar
APHA. Standard Methods for the Examination of Water and Sewage, Washington DC,1998,
Nagaraja P, Shivaswamy M, Kumar H. Highly sensitive N-(1-Naphthyl)ethylene diamine method for the spectrophotometric determination of trace amounts of nitrite in various water samples. Intern J Environ Anal Chem. 2001;80:39–48.
Google Scholar
Tsushima I, Ogasawara Y, Kindaichi T, Satoh H, Okabe S. Development of high-rate anaerobic ammonium-oxidizing (anammox) biofilm reactors. Water Res. 2007;41:1623–34.
Google Scholar
Kindaichi T, Tsushima I, Ogasawara Y, Shimokawa M, Ozaki N, Satoh H, et al. In situ activity and spatial organization of anaerobic ammonium-oxidizing (anammox) bacteria in biofilms. Appl Environ Microbiol. 2007;73:4931–9.
Google Scholar
Okabe S, Satoh H, Watanabe Y. In situ analysis of nitrifying biofilms as determined by in situ hybridization and the use of microelectrodes. Appl Environ Microbiol. 1999;65:3182–91.
Google Scholar
Pirt SJ. Maintenance energy of bacteria in growing cultures. Proc R soc Lond B Biol Sci. 1965;163:224–31.
Google Scholar
Pirt SJ. Maintenance energy: a general model for energy-limited and energy-sufficient growth. Arch Microbiol. 1982;133:300–2.
Google Scholar
Herbert D, Elsworth R, Telling RC. The continuous culture of bacteria: a theoretical and experimental study. J Gen Microbiol. 1956;14:601–22.
Google Scholar
van Verseveld HW, De Hollander JA, Frankena J, Braster M, Leeuwerik FJ, Stouthamer AH. Modeling of microbial substrate conversion, growth and product formation in a recycling fermentor. Antonie Van Leeuwenhoek. 1986;52:325–42.
Google Scholar
Lotti T, Kleerebezem R, Lubello C, van Loosdrecht MCM. Physiological and kinetic characterization of a suspended cell anammox culture. Water Res. 2014;60:1–14.
Google Scholar
Tijhuis L, Van Loosdrecht MCM, Heijnen JJ. A thermodynmically based correlation for maintenance Gibbs energy requirements in aerobic and anaerobic chemotrophic growth. Biotechnol Bioeng. 1993;42:509–19.
Google Scholar
Strous M, Heijnen JJ, Kuenen JG, Jetten MSM. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms. Appl Microbiol Biotechnol. 1998;50:589–96.
Google Scholar
Awata T, Kindaichi T, Ozaki N, Ohashi A. Biomass yield efficiency of the marine anammox bacterium, “Candidatus Scalindua sp.,” is affected by salinity. Microbes Environ. 2015;30:86–91.
Google Scholar
Henze, M. Wastewater Treatment: Biological and chemical processes. New York, NY: Springer, 1997.
Vandekerckhove, TGL, Bodé, S, De Mulder, C, Vlaeminck, SE, Boon, N. 13C Incorporation as a tool to estimate biomass yields in thermophilic and mesophilic nitrifying communities. Front Microbiol. 2019;10:192.
Tappe W, Tomaschewski C, Rittershaus S, Groeneweg J. Cultivation of nitrifying bacteria in the retentostat, a simple fermentor with internal biomass retention. FEMS Microbiol Ecol. 1996;19:47–52.
Google Scholar
Rebnegger C, Vos T, Graf AB, Valli M, Pronk JT, Daran-Lapujade P, et al. Picha pastoris exhibits high viability and a low maintenance energy requirement at near-zero specific growth rates. Appl Environ Microbiol. 2016;82:4570–83.
Google Scholar
Lever MA, Rogers KL, Lloyd KG, Overmann J, Schink B, Thauer RK, et al. Life under extreme energy limitation: a synthesis of laboratory- and field-based investigations. FEMS Microbiol Rev. 2015;39:688–728.
Google Scholar
Bulthuis BA, Frankena J, Koningstein GM, van Verseveld HW, Stouthamer AH. Instability of protease production in a rel1/rel2 pair of Bacillus licheniformis and associated morphological and physiological characteristics. Antonie Leeuwenhoek. 1988;54:95–111.
Google Scholar
Kempes, CP, van Bodegom PM, Wolpert, D, Libby, E, Amend, J, Hoehler, T. Drivers of bacterial maintenance and minimal energy requirements. Front Microbiol. 2017;8:31.
Amend JP, Shock EL. Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and Bacteria. FEMS Microbiol Rev. 2001;25:175–243.
Google Scholar
Amend JP, LaRowe DE. Minireview: demystifying microbial reaction energetics. Environ Microbiol. 2019;21:3539–47.
Google Scholar
Kartal B, Keltjens JT. Anammox biochemistry: a tale of heme c proteins. Trends Biochem Sci. 2016;41:998–1011.
Google Scholar
Scholten JCM, Conrad R. Energetics of syntrophic propionate oxidation in defined batch and chemostat coculture. Appl Environ Microbiol. 2000;66:2934–42.
Google Scholar
LaRowe DE, Amend JP. The energetics of anabolism in natural settings. ISME J. 2016;10:1285–95.
Google Scholar
LaRowe DE, Amend JP. Catabolic rates, population sizes and doubling/replacement times of microorganisms in natural settings. Am J Sci. 2015;315:167–203.
Google Scholar
Marschall E, Jogler M, Henssge U, Overmann J. Large-scale distribution and activity patterns of an extremely low-light-adapted population of green sulfur bacteria in the Black Sea. Environ Microbiol. 2010;12:1348–62.
Google Scholar
Bradley, JA, Arndt, S, Amend, JP, Burwicz, E, Dale, AW, Egger, M et al. Widespread energy limitation to life in global subseafloor sediments. Sci Adv. 2020;6:eaba0697.
Hoehler TM, Jorgensen BB. Microbial life under extreme energy limitation. Nat Rev Microbiol. 2013;11:83–94.
Google Scholar
LaRowe, DE, Amend, JP. Power limits for microbial life. Front Microbiol 2015;6:718.
Zhao R, Mogollon JM, Abby SS, Schleper C, Biddle JF, Roerdink DL. et al. Geochemical transition zone powering microbial growth in subsurface sediments. Proc Natl Acad Sci USA. 2020;117:32617–26.
Google Scholar
Pitcher A, Villanueva L, Hopmans EC, Schouten S, Reichart G-J, Sinninghe Damste JS. Niche segregation of ammonia-oxidizing archaea and anammox bacteria in the Arabian Sea oxygen minimum zone. ISME J. 2011;5:1896–904.
Google Scholar
Füssel J, Lam P, Lavik G, Jensen MM, Holtappels M, Günter M, et al. Nitrite oxidation in the Namibian oxygen minimum zone. ISME J. 2012;6:1200–9.
Google Scholar
Füchslin HP, Schneider C, Egli T. In glucose-limited continuous culture the minimum substrate concentration for growth, Smin, is crucial in the competition between the enterobacterium Escherichia coli and Chelatobacter heintzii, an environmentally abundant bacterium. ISME J. 2012;6:777–89.
Google Scholar
Source: Ecology - nature.com